National Pollutant Discharge Elimination System (NPDES) Permit Program

FACT SHEET

Regarding an NPDES Permit To Discharge to Waters of the State of Ohio for **AK Steel Corporation**

Public Notice No.: 07-10-026 Public Notice Date: October 16, 2007 Comment Period Ends: January 16, 2008 OEPA Permit No.: **11D00001*KD** Application No.: **OH0009997**

Name and Address of Applicant:

AK Steel Corporation Middletown Works 1801 Crawford Street Middletown, Ohio 45043

Receiving Water: Dicks Creek, North Branch of Dicks Creek, Great Miami River Name and Address of Facility Where Discharge Occurs:

AK Steel Corporation Middletown Works 1801 Crawford Street Middletown, Ohio 45043 Butler County

Subsequent Stream Network: Dicks Creek to Great Miami River to Ohio River

Introduction

Development of a Fact Sheet for NPDES permits is required by Title 40 of the Code of Federal Regulations, Section 124.8 and 124.56. This document fulfills the requirements established in those regulations by providing the information necessary to inform the public of actions proposed by the Ohio Environmental Protection Agency, as well as the methods by which the public can participate in the process of finalizing those actions.

This Fact Sheet is prepared in order to document the technical basis and risk management decisions that are considered in the determination of water quality based NPDES Permit effluent limitations. The technical basis for the Fact Sheet may consist of evaluations of promulgated effluent guidelines and other treatment-technology based standards, existing effluent quality, instream biological, chemical and physical conditions, and the allocations of pollutants to meet Ohio Water Quality Standards. This Fact Sheet details the discretionary decision-making process empowered to the director by the Clean Water Act and Ohio Water Pollution Control Law (ORC 6111). Decisions to award variances to Water Quality Standards or promulgated effluent guidelines for economic or technological reasons will also be justified in the Fact Sheet where necessary.

Effluent limits based on available treatment technologies are required by Section 301(b) of the Clean Water Act. Many of these have already been established by U.S. EPA in the effluent guideline regulations (a.k.a. categorical regulations) for industry categories in 40 CFR Parts 405-499. Technology-based regulations for publicly-owned treatment works are listed in the Secondary Treatment Regulations (40 CFR Part 133). If regulations have not been established for a category of dischargers, the director may establish technology-based limits based on best professional judgment (BPJ).

Ohio EPA reviews the need for water-quality-based limits on a pollutant-by-pollutant basis. Wasteload allocations are used to develop these limits based on the pollutants that have been detected in the discharge, and the receiving water's assimilative capacity. The assimilative capacity depends on the flow in the water receiving the discharge, and the concentration of the pollutant upstream. The greater the upstream flow, and the lower the upstream concentration, the greater the assimilative capacity is. Assimilative capacity may represent dilution (as in allocations for metals), or it may also incorporate the break-down of pollutants in the receiving water (as in allocations for oxygen-demanding materials).

The need for water-quality-based limits is determined by comparing the wasteload allocation for a pollutant to a measure of the effluent quality. The measure of effluent quality is called PEQ - Projected Effluent Quality. This is a statistical measure of the average and maximum effluent values for a pollutant. As with any statistical method, the more data that exists for a given pollutant, the more likely that PEQ will match the actual observed data. If there is a small data set for a given pollutant, the highest measured value is multiplied by a statistical factor to obtain a PEQ; for example if only one sample exists, the factor is 6.2, for two samples - 3.8, for three samples - 3.0. The factors continue to decline as samples sizes increase. These factors are intended to account for effluent variability, but if the pollutant concentrations are fairly constant, these factors may make PEQ appear larger than it would be shown to be if more sample results existed.

Summary of Permit Conditions

Limits at final discharge points

AK Steel has made significant improvements with respect to pollutant concentrations in the final discharges. The company no longer has the reasonable potential to contribute to WQS exceedances from most outfalls, and therefore the following limits are proposed for removal in this draft permit:

- Zinc limits at the Dicks Creek outfalls; calculated compliance point 099 would be removed;
- Ammonia, cyanide and lead limits at Outfall 011;
- Toxicity limits at Outfall 004.

All of these pollutant parameters would continue to be monitored under the conditions of the draft permit.

Effluent data for Outfall 009 shows that hexavalent chromium exhibits the reasonable potential to exceed WQS. Ohio EPA has included a compliance schedule to allow the company time to meet this new limit.

Monitoring requirements at final discharges

There are some significant changes to the monitoring requirements in the permit, based on AK's reported effluent data for the last five years, and other data collected by the company and Ohio EPA. The

Agency's approach to monitoring requirements in this permit is to retain relatively frequent monitoring for a few pollutants (principally zinc and oil&grease) at the final discharges as indicators of process pollutants, and have relatively infrequent sampling for parameters that are not normally associated with iron and steel processes. Listed below is a summary of monitoring conditions removed and added in this draft permit:

Monitoring conditions removed -

Outfall 002 - cyanide, PCBs, effluent toxicity Outfall 003 - ammonia-nitrogen, iron, lead, PCBs, effluent toxicity Outfall 004 - ammonia-nitrogen, copper, lead Outfall 009 - arsenic, cadmium, copper, cyanide, lead, nickel, silver, effluent toxicity Outfall 011 - copper Outfall 015 - ammonia-nitrogen

Monitoring conditions added -

Outfall 002 - barium, dissolved solids, iron, strontium
Outfall 003 - barium, bis(2-ethylhexyl)phthalate, fluoride, dissolved solids, mercury
Outfall 004 - barium, cyanide, fluoride, iron
Outfall 009 - fluoride
Outfall 011 - dieldrin, dissolved solids, fluoride, mercury
Outfall 015 - aldrin, barium, bis(2-ethylhexyl)phthalate, copper, cyanide, DDT compounds, dissolved solids, fluoride, iron

The monitoring parameters to be added (except mercury) are all required by Ohio's permitting rules [OAC 3745-33-07(A)(2)]. Many of these parameters triggered monitoring requirements based on small data sets, and requirements may be modified based on additional data that becomes available.

In-plant sampling locations

The limits for these sampling stations are based on federal effluent guidelines and the alternative limits (bubbles) allowed by these rules. Essentially, the "bubble" provisions allow a company to move allowable load from one sampling location to another, as long as the total load for the facility meets the effluent guideline and each sampling station has fixed limits.

While most of the "bubble" limits are those suggested by AK Steel in their application, Ohio EPA disagreed with certain allowances for non-categorical wastewaters treated at outfall 613. Ohio EPA has proposed different allowances for lead and zinc for these discharges, based on the type of wastewater. The calculations are shown in the attachment to this fact sheet. For clarity of discussion, Ohio EPA has left the load allowance difference at outfall 613/001. Loading allowances for these discharges may be "bubbled" further after discussion with AK Steel.

Ohio EPA has added low-level mercury monitoring requirements at outfalls 613 and 631. Ohio EPA has been adding monitoring requirements for low-level mercury in industrial permits that have discharges that are likely to contain mercury. These include obvious sources, such as coal-fired power plants, processors of primary materials (such as primary metal processes and oil refining), and facilities that reprocess scrap steel (mercury in automotive switches). Monitoring is proposed for outfall 613 because it is a primary metal process, and scrubbed air emissions are likely to contain some mercury; monitoring is

proposed for outfall 631 because steelmaking processes use large amounts of scrap steel. This will provide data for Ohio EPA to use for reasonable potential determinations in the next permit renewal.

Permit term

This permit is proposed to be 3 years, to get AK Steel's next permit renewal in schedule with the rest of the major permits on the lower Great Miami River. The lower Great Miami River water quality analysis is done in one wasteload allocation from Huber Heights to Fernald. Due to the large number of dischargers in the segment, it is most practical for Ohio EPA to do one wasteload allocation every five years and renew all of the permits shortly thereafter.

Table of Contents

Patroduction	ge 1
able of Contents	5
rocedures for Participation in the Formulation of Final Determinations	7
ocation of Discharge/Receiving Water Use Classification	8
xisting Facility Description	9
escription of Existing Discharge	9
ssessment of Impact on Receiving Waters	9
evelopment of Water Quality Based Effluent Limits	11
ffluent Limits / Hazard Management Decisions	13

List of Figures

Figure 1.	Location of AK Steel	22
Figure 2.	Great Miami River Study Area.	23
Figure 2.	Dicks Creek Study Area.	24

List of Tables

Table 1.	AK Steel Middletown Outfalls and Treatment Systems	25
Tables 2-7.	Effluent Characterization Using Ohio EPA Data and Application Form 2C Data	27
Tables 8-20.	Effluent Characterization Using Self-Monitoring Data	33
Tables 21-2:	5. Summary of Effluent Acute Toxicity Test Results	46
Tables 26-2	7. Summary of Effluent Chronic Toxicity Test Results	56
Table 28.	SARA Toxic Release Inventory Data	61
Table 29.	Biological Survey Results and Biocriteria	62

Table of Contents (continued)

Table 30.	Sediment Data for Dicks Creek	65
Table 31.	Effluent Data for AK Steel	67
Table 32.	Water Quality Criteria in the Great Miami River Study Area	72
Table 33.	Water Quality Criteria in the Dicks Creek Study Area	73
Table 34.	Instream Conditions and Discharger Flow for the Great Miami River	74
Table 35.	Instream Conditions and Discharger Flow for the Great Miami River	79
Tables 36-41	1. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria	82
Tables 42-47	7. Parameter Assessment	85
Tables 48-6	1. Final Effluent Limits and Monitoring Requirements for Outfall 001	93

Appendix

App A.	Effluent Guideline Calculations for AK Steel Middletown		107
--------	---	--	-----

Procedures for Participation in the Formulation of Final Determinations

The draft action shall be issued as a final action unless the Director revises the draft after consideration of the record of a public meeting or written comments, or upon disapproval by the Administrator of the U.S. Environmental Protection Agency.

Within thirty days of the date of the Public Notice, any person may request or petition for a public meeting for presentation of evidence, statements or opinions. The purpose of the public meeting is to obtain additional evidence. Statements concerning the issues raised by the party requesting the meeting are invited. Evidence may be presented by the applicant, the state, and other parties, and following presentation of such evidence other interested persons may present testimony of facts or statements of opinion.

Requests for public meetings shall be in writing and shall state the action of the Director objected to, the questions to be considered, and the reasons the action is contested. Such requests should be addressed to:

Legal Records Section Ohio Environmental Protection Agency P.O. Box 1049 Columbus, Ohio 43216-1049

Interested persons are invited to submit written comments upon the discharge permit. Comments should be submitted in person or by mail no later than 30 days after the date of this Public Notice. Deliver or mail all comments to:

Ohio Environmental Protection Agency Attention: Division of Surface Water Permit and Compliance Section P.O. Box 1049 Columbus, Ohio 43216-1049

The OEPA permit number and Public Notice numbers should appear on each page of any submitted comments. All comments received no later than 30 days after the date of the Public Notice will be considered.

Citizens may conduct file reviews regarding specific companies or sites. Appointments are necessary to conduct file reviews, because requests to review files have increased dramatically in recent years. The first 250 pages copied are free. For requests to copy more than 250 pages, there is a five-cent charge for each page copied. Payment is required by check or money order, made payable to Treasurer State of Ohio.

Location of Discharge/Receiving Water Use Classification

AK Steel Corporation discharges at River Mile (RM) 51.45 to the Great Miami River (outfall 011). Outfalls 002, 003, 008, 009 and 015 discharge to Dicks Creek at RMs 2.92, 3.80, 3.9, 3.6 and 4.15, respectively. Outfall 004 discharges to the North Branch of Dicks Creek at RM 0.22. North Branch flows into Dicks Creek at RM 5.11; Dicks Creek enters the Great Miami River at RM 47.61. The approximate location of the facility is shown in Figure 1.

Dicks Creek is designated Modified Warmwater Habitat (MWH) from RM 5.4 (Cincinnati-Dayton Road) to RM 2.4 (Yankee Road); the rest of Dicks Creek is designated Warmwater Habitat (WWH). The entire length of Dicks Creek is designated Agricultural Water Supply (AWS), Industrial Water Supply (IWS) and Primary Contact Recreation (PCR). The North Branch of Dicks Creek is designated WWH from the headwaters to RM 1.0 (Breiel Boulevard), and MWH from RM 1.0 to the mouth. Again the entire length of North Branch is designated Agricultural Water Supply (AWS), Industrial Water Supply (IWS) and Primary Contact Recreation (PCR).

This segment of the Great Miami River is described by Ohio EPA River Code: 14-001, USEPA River Reach #: 05080002-006, County: Butler, Ecoregion: Eastern Corn Belt Plains. The Great Miami River is presently designated for the following uses: Warmwater Habitat (WWH), Agricultural Water Supply (AWS), Industrial Water Supply (IWS), and Primary Contact Recreation (PCR).

Use designations define the goals and expectations of a waterbody. These goals are set for aquatic life protection, recreation use and water supply use, and are defined in the Ohio WQS (OAC 3745-1-07). The use designations for individual waterbodies are listed in rules -08 through -32 of the Ohio WQS. Once the goals are set, numeric water quality standards are developed to protect these uses. Different uses have different water quality criteria.

Use designations for aquatic life protection include habitats for coldwater fish and macroinvertebrates, warmwater aquatic life and waters with exceptional communities of warmwater organisms. These uses all meet the goals of the federal Clean Water Act. Ohio WQS also include aquatic life use designations for waterbodies which can not meet the Clean Water Act goals because of human-caused conditions that can not be remedied without causing fundamental changes to land use and widespread economic impact. The dredging and clearing of some small streams to support agricultural or urban drainage is the most common of these conditions. These streams are given Modified Warmwater or Limited Resource Water designations.

Recreation uses are defined by the depth of the waterbody and the potential for wading or swimming. Uses are defined for bathing waters, swimming/canoeing (Primary Contact) and wading only (Secondary Contact - generally waters too shallow for swimming or canoeing).

Water supply uses are defined by the actual or potential use of the waterbody. Public Water Supply designations apply near existing water intakes so that waters are safe to drink with standard treatment. Most other waters are designated for agricultural and industrial water supply.

The Middle Great Miami River study area is shown in Figure 2. The Dicks Creek study area is shown in Figure 3.

Facility Description

AK Steel is a fully integrated steel plant producing flat rolled steel. AK produces intermediate products of pig iron and coke. The plant also conducts steel coating and finishing operations. The process operations performed at this facility are classified by the Standard Industrial Classification (SIC) codes 3312, "Steel Works, Blast Furnace, Rolling". Discharges resulting from process operations are therefore subject to Federal Effluent Guideline Limitations, contained in Chapter 40 of the Code of Federal Regulations, Part 420, "Iron and Steel Manufacturing" Industrial Category and Part 433, "Metal Finishing" Industrial Category.

Description of Existing Discharge

AK Steel has seven outfalls - five discharge to Dicks Creek (outfalls 015, 003, 002, 008 and 009), one discharges to North Branch Dicks Creek (outfall 004) and one discharges to the Great Miami River (outfall 011). Various treatment systems discharge to outfalls 015, 003, 004 and 011; these treatment systems are designated in the NPDES permit as in-plant monitoring points that measure compliance with the federal effluent guideline limitations before mixing with other non-process wastewaters. These monitoring points are necessary because federal rules (40 CFR 125.3) forbid the use of dilution to meet these standards. Table 1 presents a detailed summary of AK's outfalls, types of wastewater, treatment systems used, and the discharge points. All of AK's sanitary wastewater and coke plant process water flow to the City of Middletown wastewater treatment plant (WWTP). Some of the wastewater generated (e.g. spent pickle liquor) is deep well injected.

Tables 2-7 present a summaries of analytical results for effluent samples compiled from the NPDES application, and from bioassay tests done by Ohio EPA. The monthly average PEQ_{avg} and daily maximum PEQ_{max} decision criteria are also included on this table.

Tables 8-20 present summaries of unaltered monthly operation report data for the period January 1996 to November 2001 for AK Steel as well as current permit limits, and monthly average PEQ_{avg} and daily maximum PEQ_{max} values.

Tables 21-27 present results from acute and chronic bioassay tests conducted in accordance with the NPDES permit. <u>Pimephales promelas</u> (fathead minnows), <u>Daphnia magna</u> (water flea), and <u>Ceriodaphnia dubia</u> (water flea) were the test organisms.

Table 28 presents results on the SARA toxic release inventory.

Receiving Water Quality / Environmental Hazard Assessment

An assessment of the impact of a permitted point source on the immediate receiving waters includes an evaluation of the available chemical/physical (water column, effluents, sediment, flows), biological (fish and macroinvertebrate assemblages), and habitat data which have been collected by Ohio EPA pursuant to the Five-Year Basin Approach for Monitoring and NPDES Reissuance. Other data may be used provided it was collected in accordance with Ohio EPA methods and protocols as specified by the Ohio Water Quality Standards and Ohio EPA guidance documents. Other information which may be evaluated includes, but is not limited to, NPDES permittee self-monitoring data and effluent and mixing zone bioassays conducted by Ohio EPA, the permittee, or U.S. EPA.

The following discussion of biological data is taken from the Technical Support Document (TSD) "Biological and Water Quality Study of the Middle and Lower Great Miami River and Selected Tributaries, 1995". The full document can be obtained through the OEPA, Division of Surface Water website @ www.epa.state.oh.us/dsw/index.

Ohio EPA relies on a tiered approach in attempting to link administrative activity indicators (*i.e.*, permitting, grants, enforcement) with true environmental indicators (*i.e.*, stressor, exposure, and response indicators). Stressor indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. Exposure indicators include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to stressor or bioaccumulative agents. Response indicators include the more direct measures of community and population response and are represented here by the biological indices which comprise Ohio EPA's biological criteria. The key is in using the different types of indicators within the roles which are the most appropriate for each. Describing the causes and sources associated with observed impairments relies on an interpretation of multiple lines of evidence including the water chemistry data, sediment data, habitat data, effluent data, biomonitoring results, land use data, and biological response signatures within the biological data itself. Thus the assignment of principal causes and sources of impairment represents the association of impairments (defined by response indicators) with stressor and exposure indicators.

Use attainment is a term which describes the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing use attainment status for aquatic life uses involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-14). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices which include the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), which indicate the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the mactoinvertebrate community. Numerical endpoints are stratified by ecoregion, use designation, and stream or river size. Three attainment status results are possible at each sampling location -full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Partial attainment means that one or more of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (see Table 29) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (i.e., full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and comments and observations for each sampling location.

Aquatic life use attainment status in the Great Miami River from Middletown to the Ohio River has also improved markedly since the 1980 and 1989 surveys due to the numerous WWTP upgrades and subsequent reductions in loadings of oxygen demanding wastes and ammonia-N, although recovery is not yet complete. The 2000 limited survey in the Middletown area showed continued improvement over the 1995 results. All ambient sites sampled in 2000 showed attainment of WWH biological criteria. The response of the macroinvertebrate community within the AK Steel 011 mixing zone (RM 51.4) continued to indicate highly toxic conditions. This appears to be a localized condition, with full attainment occurring downstream of the mixing zone to the Middletown WWTP.

Dicks Creek macroinvertebrates have improved dramatically since the last Ohio EPA survey in 1995 and collections by E.A. Engineering from 1998 and 1999. During those surveys, communities were

consistently evaluated as poor both upstream and adjacent to the AK Steel complex. Response signatures indicated nutrient enrichment/low flow impacts in the watershed above AK Steel and a toxic response adjacent to and downstream from AK outfalls. Macroinvertebrates in 2000 and 2001 were performing for the first time near or at ecoregional expectations in the WWH and MWH segments. Only in short reaches in the vicinity of the North Branch and AK 015 and 003 outfalls did the macroinvertebrate community decline to just below the MWH biocriterion. Fish communities have fairly consistently met MWH benchmarks since Ohio EPA sampling in 1987 with more recent achievement of WWH biocriteria in the lower reaches of Dicks Creek. Attainment has remained inconsistent in the WWH reach upstream from AK Steel.

Fish and macroinvertebrate communities have remained fairly stable in the reach of the North Branch which has been sampled since 1987 (RMs 1.0-0.0; MWH). With the exception of 1995, when poor and very poor macroinvertebrate communities were collected, ICI scores have reflected fair quality communities with more recent data near or at the MWH biocriterion. Fish communities have consistently been good to very good quality in this reach since 1987. Results of chemical sampling downstream from the AK 004 outfall indicated large increases in conductivity, TDS, and hardness (3-4 times above background). Similar increases occurred in concentrations of Mg, Ca, Na, chlorides, and sulfates (2-15 times above background). Most of these parameters remained elevated at these levels throughout Dicks Creek to the mouth. Fish and macroinvertebrate communities in the WWH reach of the North Branch reflected depressed conditions typical of an urban influenced stream.

Development of Water-Quality-Based Effluent Limits

Determining appropriate effluent concentrations is a multiple-step process in which parameters are identified as likely to be discharged by a facility, evaluated with respect to Ohio water quality criteria, and examined to determine the likelihood that the existing effluent could violate the calculated limits.

The assimilative capacity was divided among several facilities in order to account for possible interactivity of the discharges. The CONSWLA model was used to distibute the loads of those conservative parameters requiring allocation. The study area is depicted in Figures 1 and 2.

Parameter Selection

Effluent data for AK Steel were used to determine what parameters should undergo wasteload allocation. The sources of effluent data are as follows:

Self-monitoring data (SWIMS) 2C data Ohio EPA data (compliance, survey) January 2002 through February 2007 2001 2000-01 The data were evaluated for outliers, and the following values were removed from the data set:

Outfall 002 - zinc (412 ug/l), free cyanide (5.44 ug/l, 21 ug/l) Outfall 003 - ammonia-N (0.05 mg/l), lead (7 ug/l, 27 ug/l) Outfall 004 - copper (12 ug/l), zinc (1160 ug/l, 2 values <40 ug/l) Outfall 009 - COD (225 mg/l), selenium (10 ug/l) Outfall 011 - ammonia-N (0.05 mg/l), copper (41 ug/l), lead (202 ug/l) Outfall 015 - lead (4, 5, 31 ug/l)

Wasteload Allocation

For those parameters that require a wasteload allocation (WLA), the results are based on the uses assigned to the receiving waterbody in OAC 3745-1. The applicable waterbody uses for this facility's discharge and the associated stream design flows are as follows:

)
ter 30Q10
an flow
an flow

Allocations are developed using a percentage of stream design flow (as specified in Tables 34 and 35), and allocations cannot exceed the Inside Mixing Zone Maximum criteria.

The data used in the WLA are listed in Tables 32 through 35. The wasteload allocation results to maintain all applicable criteria are presented in Tables 36 through 42. The current permit limits for NH_3 -N were evaluated and are adequate to maintain the WQS for NH_3 -N. Therefore, NH_3 -N will not be addressed further in this report.

Reasonable Potential

The preliminary effluent limits are the lowest average WLA (average PEL) and the maximum WLA (maximum PEL). To determine the reasonable potential of the discharger to exceed the WLA for each parameter, the facility's effluent quality is compared to the preliminary effluent limits. The average PEQ value (Table 31) is compared to the average PEL, and the maximum PEQ value is compared to the maximum PEL. Based on the calculated percentage of the respective average and maximum comparisons, the parameters are assigned to "groups", as listed in Tables 43 through 49.

Whole Effluent Toxicity

The allowable effluent toxicity (AET) is a factor considered in evaluating whole effluent toxicity. The AET calculations are similar to those for aquatic life criteria (using the chronic toxicity unit (TU_c) and 7Q10 for average and the acute toxicity unit (TU_a) and 1Q10 for maximum). For AK Steel, the AET values are presented in the following table:

	TU_{c}	TUA
002	6.87	0.3
003	2.91	0.3
004	1.0	0.3
007	105.6	0.3
009	160.8	0.3
011	31.0	1.0
015	5.19	0.3

Effluent Limits/Hazard Management Decisions

Final Outfalls / Water Quality Based Permit Limits

After appropriate effluent limits are calculated, the reasonable potential of the discharger to violate the WLA (and the WQS) must be determined. Each parameter is examined and ranked or "grouped" based on a comparison of effluent quality to levels needed to protect WQS. Parameters that do not have a WQS or do not require a WLA based on the initial screening are assigned to either group 1 or 2. For the allocated parameters, the Preliminary Effluent Limit (PEL) for the most restrictive average and maximum WLA were selected from Tables 36-42. The PEL_{avg} was compared to the PEQ_{avg} value for the same outfall from Table 30, and the PEL_{max} was compared to the PEQ_{max} value. Based on the calculated percentage of the allocated value, the parameters are assigned to group 3, 4 or 5. The listing in Tables 43-49 reflect the hazard assessment done according to WLA procedures. Tables 50-63 show the draft NPDES limits for AK Steel.

For this fact sheet, a discussion of final outfalls and water quality-based limits is followed by a discussion of the in-plant monitoring locations, and the treatment standards that apply at those locations.

For all final outfalls, limits proposed for oil and grease and pH are based on Water Quality Standards (OAC 3745-1). Also, monitoring is proposed at all final outfalls for zinc. Zinc is the most commonly detected process water pollutant in Iron and Steel wastewaters and storm waters.

Ohio EPA's approach to monitoring in this permit is to require frequent monitoring for a short list of characteristic pollutants at each outfall, and less frequent monitoring of pollutant parameters that must be monitored according to Ohio rules; these mandatory parameters often result from projections of effluent values from small data sets. Small data sets require larger uncertainty factors when judging effluent quality, to evaluate all reasonably potential data maximums; these uncertainty factors cause effluent values appear to be higher than they likely would be if more data were available (because we are looking at a larger range of effluent values than are likely to occur). The permit does contain relatively infrequent monitoring of these parameters, enough to be certain of effluent characteristics for the next permit renewal.

Outfall 002 Conditions

The Ohio EPA risk assessment (Table 43) places barium and dissolved solids in group 5 which

recommends limits to protect water quality. The small data set for these parameters indicates that the PEQ values for these parameters may not be representative of the discharge. Using the discretion allowed the Director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants

Ohio EPA risk assessment (Table 43) places iron and strontium in group 4. This placement as well as the data in Tables 2, 9 and 31 support that these parameters do not have the reasonable potential to contribute to WQS exceedances, and limits are not necessary to protect water quality. Monitoring for Group 4 pollutants (where PEQ exceeds 50% of the WLA) is required by OAC Rule 3745-33-07(A)(2).

In addition, the iron effluent quality falls within 75% of the wasteload allocation. Under OAC 3745-33-07(A)(2), parameters in this range must have a tracking requirement in the permit that specifies reductions in pollutant concentrations if effluent concentrations exceed the WLA. The tracking/ reduction requirements are included in Part II Item _ of the draft permit.

The draft permit would continue monitoring requirements for ammonia and zinc, as these are process pollutants associated with the coke plant area, and could potentially be present in storm water.

Effluent toxicity values are compared to wasteload allocation values. This comparison along with an assessment of the instream community are two ways in which whole effluent toxicity is evaluated. For outfall 002 the chronic WLA is 6.87 TU_{c} and acute WLA is 0.3 TU_{a} .

None of the toxicity tests for this outfall (21 acute, 18 chronic) showed statistically significant toxicity to test organisms (see Tables 21 and 26). This outfall does not have the reasonable potential to contribute to exceedances of WQS, and toxicity monitoring is not proposed for this outfall.

Outfall 003 Conditions

The Ohio EPA risk assessment (Table 44) places barium and bis(2-ethylhexyl)phthalate in group 5 which recommends limits to protect water quality. The small data set for these parameters indicates that the PEQ values for these parameters may not be representative of the discharge. Using the discretion allowed the Director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants.

Ohio EPA risk assessment (Table 44) places fluoride and dissolved solids in group 4. This placement as well as the data in Tables 3, 10 and 31 support that these parameters do not have the reasonable potential to contribute to WQS exceedances, and limits are not necessary to protect water quality. Monitoring for Group 4 pollutants (where PEQ exceeds 50% of the WLA) is required by OAC Rule 3745-33-07(A)(2).

In addition, the effluent quality for fluoride and dissolved solids falls within 75% of the wasteload allocation. Under OAC 3745-33-07(A)(2), parameters in this range must have a tracking requirement in the permit that specifies reductions in pollutant concentrations if effluent concentrations exceed the WLA. The tracking/reduction requirements are included in Part II Item _ of the draft permit.

The draft permit would continue monitoring requirements for zinc.

The WLA for outfall 003 also contains an additivity factor equation. The WLA additivity equation deals with additive effects from bis(2-ethylhexyl)phthalate and hexachlorobenzene. The WLA for hexachlorobenzene (0.035 ug/l) is less than the minimum concentration that can be measured for the

chemical (0.25 ug/l). If this chemical were left in the equation, any detection of it would cause two violations of essentially the same limit. Using the discretion allowed the director under OAC Rule 3745-33-07(A)(8)(b), we are removing hexachlorobenzene from the additivity equation. The additivity equation is therefore not needed for this discharge.

WET values are compared to wasteload allocation values. This comparison along with an assessment of the instream community are two ways in which whole effluent toxicity is evaluated. For AK Steel outfall 003, the chronic WLA is 2.91 TU_c and acute WLA is 0.3 TU_a.

The current permit requires monthly acute screening toxicity tests for this outfall. These tests are pass/ fail tests that will show a toxic effect, if present, but will not indicate the level of toxicity. None of the 91 screening tests conducted at this outfall showed any acute toxicity (Table 22). Ohio EPA is therefore proposing to remove toxicity testing requirements for this outfall.

Outfall 004 conditions

The Ohio EPA risk assessment (Table 45) places total dissolved solids in group 5. This placement as well as the data in Tables 4 and 31 indicate that the reasonable potential to exceed WQS exists and limits are necessary to protect water quality. The thirty day average limit for TDS is based on the current wasteload allocation for Dick's Creek. Limits are being required, even with a small data set, because all available data values exceed the wasteload allocation, and TDS is commonly elevated in discharges of steel finishing wastewater.

This outfall does not currently meet this limit. We have included a compliance schedule that provides the company time to meet the limit, or to demonstrate an alternative limit that protects against chronic toxicity.

The Ohio EPA risk assessment (Table 45) places iron in group 5 which recommends limits to protect water quality. There is a very small data set for iron at this outfall, and none of the measured values exceed the wasteload allocation; therefore, the PEQ value may not be representative of the discharge. Using the discretion allowed the Director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants.

Ohio EPA risk assessment (Table 45) places barium, free cyanide and fluoride in group 4. This placement as well as the data in Tables 4, 11 and 31 support that these parameters do not have the reasonable potential to contribute to WQS exceedances, and limits are not necessary to protect water quality. Monitoring for Group 4 pollutants (where PEQ exceeds 50% of the WLA) is required by OAC Rule 3745-33-07(A)(2).

In addition, the effluent quality for barium and fluoride falls within 75% of the wasteload allocation. Under OAC 3745-33-07(A)(2), parameters in this range must have a tracking requirement in the permit that specifies reductions in pollutant concentrations if effluent concentrations exceed the WLA. The tracking/reduction requirements are included in Part II Item _ of the draft permit.

The draft permit would also continue monitoring requirements for zinc.

WET values are compared to wasteload allocation values. This comparison along with an assessment of the instream community are two ways in which whole effluent toxicity is evaluated. For AK Steel outfall 004, the chronic WLA is 1.0 TU_{c} and acute WLA is 0.3 TU_{a} .

Of the 36 acute toxicity results available for this outfall, only one result from 2000 showed any acute toxicity. Several samples since that time tested by AK and Ohio EPA have found no acute toxicity. As a result, this one result is considered unrepresentative of the discharge. None of the 33 chronic tests showed toxicity to test organisms.

Based on these results, there is no reasonable potential for this discharge to cause or contribute to exceedances of toxicity standards in the creeks; therefore, we are proposing to remove the toxicity limits. We are proposing to continue the chronic testing requirement for the water flea *Daphnia magna* for the following reasons: (1) AK Steel appears to be meeting this toxicity measure through management of wastewater flows at outfall 004 and the internal stations tributary to it (stations 641 and 642). No Permit-to-Install was submitted for treatment improvements in this area during that time; and (2) the 2000 biological results, taken as these measures were being finalized, showed some residual impairment of macroinvertebrate communities in North Branch of Dick's Creek. Continued monitoring is needed to monitor the status of these controls.

Outfall 009 conditions

The Ohio EPA risk assessment (Table 47) places hexavalent chromium in group 5. This placement as well as the data in Tables 5 and 31 indicate that the reasonable potential to exceed WQS exists and limits are necessary to protect water quality. The daily maximum limit for hexavalent chromium is based on the inside-mixing-zone maximum water quality standard, and dilution from upstream outfalls on Dick's Creek.

The Ohio EPA risk assessment (Table 47) places fluoride in group 5 which recommends limits to protect water quality. The small data set for these parameters indicates that the PEQ values for these parameters may not be representative of the discharge. Using the discretion allowed the Director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants.

The draft permit would also continue monitoring requirements for ammonia and zinc.

Outfall 011 Conditions

The Ohio EPA risk assessment (Table 48) places dieldrin, dissolved solids and fluoride in group 5 which recommends limits to protect water quality. The small data set for these parameters indicates that the PEQ values for these parameters may not be representative of the discharge. Using the discretion allowed the director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants.

Ohio EPA risk assessment (Table 48) places lead in group 4. This placement as well as the data in Tables 6, 14 and 31 support that lead does not have the reasonable potential to contribute to WQS exceedances, and limits are not necessary to protect water quality. Monitoring for Group 4 pollutants (where PEQ exceeds 50% of the WLA) is required by OAC Rule 3745-33-07(A)(2).

The draft permit would also continue monitoring requirements for ammonia, free cyanide and zinc. The ammonia limits have been removed because effluent data shows that the discharge no longer has the reasonable potential to contribute to WQS exceedances.

The WLA for outfall 011 contains an additivity factor equation. Additivity is the combined toxic effect of carcinogenic (cancer-causing) pollutants. This section evaluates each quotient in the additivity factor equation to determine whether an additivity factor equation is necessary in the permit to limit the total

carcinogen risk to 1 x 10⁻⁵ (1 in 100,000) or whether additivity is insignificant or "de minimis".

Outfall 011 has discharged a few chemicals classified as carcinogens. Ohio Rule 3745-33-07(A)(8) requires that Ohio EPA assess the additive carcinogenic effect of these chemicals to determine whether this addivite effect needs to be limited. The WLA additivity equation in Table 48 would limit the additive effects from dieldrin, heptachlor and hexachlorobenzene.

The above rule allows Ohio EPA to remove chemicals from this equation if the limit for the chemical is less than the analytical quantification level (that is, if the test method can not reliably measure down to the limit); if these chemicals were left in the equation, any detection of them would cause two violations of essentially the same limit. The WLA for hexachlorobenzene (0.2 ug/l) is less than the minimum concentration that can be measured for the chemical (0.25 ug/l - also known as the quantification level). Using the discretion allowed the director under OAC Rule 3745-33-07(A)(8)(b), we are removing hexachlorobenzene from the additivity equation.

For the combined effect of dieldrin and heptachlor, outfall 011does not have the reasonable potential to contribute to an exceedance of the carcinogen risk standard. Using the projected effluent (PEQ) data for these chemicals, we can show that the sum of the PEQs do not exceed the carcinogen standard:

 $\frac{\text{PEQdieldrin}}{0.063 \text{ ug/l}} + \frac{\text{PEQheptachlor}}{0.2 \text{ ug/l}} = \frac{0.0244 \text{ ug/l}}{0.063 \text{ ug/l}} + \frac{0.0064 \text{ ug/l}}{0.2 \text{ ug/l}} < 1.0$

Acute toxicity is only rarely present in outfall 011. Only one result in several years of sampling showed toxicity. The biological survey results from 2000 continue to show toxicity to invertebrates; however, the biological results do not readily distinguish acute from chronic toxicity. The most logical conclusion from this data is that the survey results are showing a chronic effect from the 011 discharge. Chronic effects within mixing zone / near-field areas are not exceedances of water quality standards, which prohibit only rapidly lethal, or acutely toxic conditions.

As a result of this, the draft permit contains minimal toxicity testing requirements, designed to show that acute toxicity standards continue to be met. Acute testing with both fish and invertebrates would be required twice/per year.

Outfall 015 conditions

The Ohio EPA risk assessment (Table 49) places aldrin, barium, bis(2-ethylhexyl)phthalate, fluoride, iron and total dissolved solids in group 5 which recommends limits to protect water quality. The small data set for these parameters indicates that the PEQ values for these parameters may not be representative of the discharge. Using the discretion allowed the Director under OAC 3745-33-07(A)(5), we are proposing monitoring, rather than limits, for these pollutants.

Ohio EPA risk assessment (Table 49) places copper, free cyanide, 4,4'-DDD and strontium in group 4. This placement as well as the data in Tables 7, 15 and 31 support that these parameters do not have the reasonable potential to contribute to WQS exceedances, and limits are not necessary to protect water quality. Monitoring for Group 4 pollutants (where PEQ exceeds 50% of the WLA) is required by OAC Rule 3745-33-07(A)(2).

In addition, the effluent quality for free cyanide falls within 75% of the wasteload allocation. Under OAC 3745-33-07(A)(2), parameters in this range must have a tracking requirement in the permit that

specifies reductions in pollutant concentrations if effluent concentrations exceed the WLA. The tracking/reduction requirements are included in Part II Item _ of the draft permit.

The draft permit also would continue monitoring requirements for zinc.

The WLA for outfall 015 contains an additivity factor equation. Additivity is the combined toxic effect of carcinogenic (cancer-causing) pollutants. This section evaluates each quotient in the additivity factor equation to determine whether an additivity factor equation is necessary in the permit to limit the total carcinogen risk to 1×10^{-5} (1 in 100,000) or whether additivity is insignificant or "de minimis".

Outfall 015 has discharged several chemicals classified as carcinogens. Ohio Rule 3745-33-07(A)(8) requires that Ohio EPA assess the additive carcinogenic effect of these chemicals to determine whether this addivite effect needs to be limited. The WLA additivity equation in Table 48 would limit the additive effects from aldrin, bis(2-ethylhexyl)phthalate, 4,4'-DDD, gamma-BHC and heptachlor.

The above rule allows Ohio EPA to remove chemicals from this equation if the limit for the chemical is less than the analytical quantification level (that is, if the test method can not reliably measure down to the limit); if these chemicals were left in the equation, any detection of them would cause two violations of essentially the same limit. The WLA for aldrin (0.011 ug/l) is less than the minimum concentration that can be measured for the chemical using standard federal methods (0.02 ug/l - also known as the quantification level). Using the discretion allowed the director under OAC Rule 3745-33-07(A)(8)(b), we are removing aldrin from the additivity equation.

For the combined effect of the remaining four chemicals, outfall 015 appears to have the reasonable potential to contribute to an exceedance of the carcinogen risk standard. However, as pointed out above, the PEQ values for these chemicals may not be representative of the discharge. Using the discretion in OAC Rule 3745-33-07(A)(5), the draft permit contains a source evaluation for these pollutants, rather than a limit on carcinogen additivity.

WET values are compared to wasteload allocation values. This comparison along with an assessment of the instream community are two ways in which whole effluent toxicity is evaluated. For AK outfall 015 the chronic WLA is 5.19 TU_c and acute WLA is 0.3 TU_a .

None of the three acute tests conducted on this discharge showed acute toxicity. There is no reasonable potential for this discharge to contribute to exceedances of acute toxicity WQS, and Ohio EPA is not proposing toxicity testing at this outfall.

Internal and Calculated Outfalls / Treatment Technology Based Limits

The internal sampling stations and calculated compliance points are included in this permit to track compliance with federal treatment technology standards, also called effluent guideline limitations. Limitations are placed at these internal points (mostly at the outlet of treatment systems) to monitor the discharges for compliance before they are diluted by other waters. Federal NPDES regulations prohibit meeting these standards by dilution [40 CFR 125.3(f)].

Treatment standards for Iron and Steel Manufacturing processes apply at internal outfalls 005, 613, 614, 631 and 641, and also at calculated compliance point 001 (which is the sum load of internal outfalls 613

and 614). Treatment standards for Metal Finishing processes apply at internal outfall 642.

Treatment-technology-based limits for the Iron and Steel industry, found in 40 CFR Part 420, are based on the kilograms of pollutant allowed to be discharged per 1000 kg. of production. The plant production rates used are the maximum 30-day average rates for the past five years. Effluent guideline calculations are shown in the attachment to this fact sheet.

Some of the Iron and Steel process loadings are applied directly at the related outfall; some pollutant loads are based on effluent guideline loads shifted from outfall to outfall, as allowed by the federal Iron and Steel effluent guidelines [40 CFR 420.03]. AK Steel has proposed to shift, or bubble, loading limits for total suspended solids, lead and zinc among outfalls 613/001, 631, 641 and 005 to comply with applicable BPT and BAT guidelines.

The bubble rule allows AK Steel to add up all of the allowable load for TSS, lead and zinc for all of the outfalls, and re-assign load limits to the outfalls, as long as the total facility loadings are met for each pollutant. Each process is allowed a loading per ton of production for each pollutant. The loading allowances are calculated as follows: load limits (kg./day) = federal effluent guideline (kg./kkg.) x production (tons/day) x 0.908 kkg/ton. As an example, the average TSS loading for the blast furnace treatment system discharge (outfall 613) would be calculated as: 0.026 kg/kkg x 7176 tons/day x 0.908 kkg/ton = 169 kg/day. The load allowances for each process are added together to get the total load allowed for a given outfall.

The calculations are shown in the attachment to this fact sheet. The effect of the bubble is to move allowable load from the upstream Dicks Creek outfalls (641/004 and 005/015) to outfalls further down Dicks Creek (outfall 631/003) and to the Great Miami River (outfall 613/001/011).

The bubble calculations presented are generally those developed by AK Steel and submitted in their NPDES application. While Ohio EPA accepts the bubble approach, we disagree with the BPJ allowances for lead and zinc that AK Steel requested for non-categorical process waters treated at outfall 613. The differences are reflected in the limits for outfall 001 for clarity. It is possible that AK will request that loads be adjusted again, based on these differences.

The federal rules clearly allow for BPJ allowances; however, federal guidance on these rules indicates that the BPJ allowances should reflect the wastestreams treated, and should not be assumed to have the same characteristics as Iron and Steel process wastewaters (Development Document for Final Effluent Limitations Guidelines and Standards for the Iron and Steel Manufacturing Point Source Category, April 2002, p.16-13).

The additional wastewaters treated at outfall 613 are water treatment plant and boiler blowdown wastewaters. These utility-type wastewaters were considered by U.S. EPA in developing the Steam Electric Power Generating effluent guidelines (40 CFR 423). Those guidelines include these wastewaters in the definition of "Low volume wastewater". Ohio EPA looked at data for low volume wastewaters in developing BPJ values. For lead, effluent data from the Steam Electric Power development document was used to calculate PEQ values. These PEQ values were used as BPJ limits for lead.

For zinc, Ohio EPA found discharge data from a treatment plant discharging low volume wastewater only. The PEQ values for this discharge were used as BPJ allowances for AK Steel's utility wastewaters.

This data was used instead of the Steam Electric Power development document information because the effluent data was a much larger data set.

Outfall 613 conditions

The limits for total cyanide and total phenolics at this outfall are effluent guideline limits for blast furnace wastewaters directly applied. Limits are calculated as follows: cyanide limits (kg./day) = BAT (kg./kkg.) x production (tons/day) x 0.908 kkg/ton, or for average cyanide limits - 0.000876 kg/kkg x 7176 tons/day x 0.908 kkg/ton = 5.71 kg/day. Maximum limits for cyanide, and average and maximum limits for phenolics are calculated using the same formulas. All of the effluent guideline calculations are shown in the attachment to this fact sheet.

The limits for ammonia at outfall 613 are based on a continuation of the plant's 301(g) variance. Section 301(g) of the Clean Water Act allows a facility a variance from Best Available Treatment requirements for ammonia and certain other pollutants. To be approved under this variance, a facility must be able to show that it can meet both BPT treatment standards and water quality standards. USEPA grants these variances, with state concurrence.

AK Steel has made this demonstration with their current application. Ohio EPA has recommended the variance limits to USEPA, and USEPA is proposing to approve the variance with this permit. The analysis showing that the variance limits meet BPT and water quality standards is in the attachment to this fact sheet.

AK Steel had also requested a continuation of the 301(g) variance limits for total phenolic compounds. Ohio EPA has recommended that USEPA not approve this variance because the treatment system at outfall 613 has been able to maintain compliance with BAT limitations over the last permit cycle.

The limits for total suspended solids, lead and zinc at outfall 613 are part of the bubble proposed by AK Steel. These limits are expressed at outfall 001 to reflect the sum of process wastewaters discharged from outfalls 613 and 614.

Outfall 614 conditions

The limits for naphthalene and tetrachloroethylene are based on BAT effluent guidelines for the Iron and Steel Industry (Cold Forming Subcategory). Like other Iron and Steel guideline limits, these are production based. Calculations are shown the attachment to this fact sheet. The pH limits are BPT effluent guidelines.

Outfall 001 conditions

Outfall 001 does not physically exist; it is a reporting station included in the permit to track compliance with limits that represent the sum of allowable loadings for outfalls 613 and 614. The limits for TSS, lead and zinc are from the bubble calculations. The oil&grease limits are the effluent guideline limits for outfall 614.

Outfall 005 conditions

Outfall 005 is an internal outfall tributary to outfall 015. The limits for TSS, lead and zinc are from the bubble calculations. The oil&grease limits are the existing permit limits. These limits were based on best professional judgment, and are being continued in the current permit based on state and federal antibacksliding rules [OAC 3745-33-05(E) and 40 CFR 122.45]. The pH limits are based on BPT

effluent guidelines.

Outfall 641 conditions

The limits for TSS, lead and zinc are based on the bubble calculations. The limits for oil&grease and pH are based on BPT effluent guidelines. The limits for naphthalene and tetrachloroethylene are based on BAT effluent guidelines. All effluent guideline calculations are shown in the attachment to this fact sheet.

Outfall 642 conditions

Outfall 642 is the treatment system for the electrogalvanizing process, tributary to outfall 004. Electrogalvanizing is covered under the Metal Finishing effluent guidelines (40 CFR 433), rather than the Iron and Steel guidelines. The Metal Finishing guidelines are expressed as concentrations of pollutants in treated process wastewater, rather than loading per ton of production. Typically, concentrations are multiplied by the wastewater flow to ensure than dilution is not being substituted for treatment. In previous permits, AK Steel has agreed to a flow limitation, rather than loading limitations for Metal Finishing pollutant parameters. We are continuing this approach in the draft permit.

The effluent limits for TSS, oil&grease, pH and zinc are based on New Source Performance Standards from the Metal Finishing guidelines. The effluent limits for chromium, nickel and Total Toxic Organics (TTO) are antidegradation-based limits from the current permit. They are being continued in the draft permit based on the antibacksliding rule.

The Metal Finishing regulations also include limits for cadmium, copper, lead, silver and cyanide. While these pollutants are part of the regulation, AK Steel does not use these materials in the electrogalvanizing process, and effluent concentrations for these pollutants are expected to be close to background levels. As a result, we have included a monitoring waiver for these pollutants at outfall 642.

Figure 1. Approximate location of the AK Steel Middletown Works.

Figure 3. Dicks Creek Study Area.

Outfall	Type of Waste	Treatment System	Discharge Point
011	Treated process water (in-plant stations 613 and 614), non-contact cooling water, storm water runoff, boiler water, zeolite rinse, Kinney Rinse	None at final outfall (see 001, 613 and 614)	Great Miami River
001	Calculated sum of stations 613 and 614	(See 613 and 614)	Outfall 011
613	Treated process water from blast furnace	Settling, activated sludge aeration, chemical precipitation, flocculation, settling, landfilling of sludge.	Outfall 011
614	Process water from cold temper mills, acid pickling, alkaline cleaning, fume scrubbers, hot coating lines, inorganic chemicals, oxygen and nitrogen production, non-contact cooling water from oxygen/nitrogen production.	North Terminal WWTP: Oil skimming, neutralization, chemical precipitation, chemical oxidation (aeration), flocculation, settling, vacuum filtration and landfilling of sludge.	Outfall 011
002	Non-contact cooling water from by- products area of coke plant, other non- contact cooling waters and storm water runoff	None	Dicks Creek
003	Treated process water from basic oxygen furnace clarification system (in-plant station 631), cooling tower blowdown, storm water runoff	None at final outfall (see outfall 631)	Dicks Creek
631	Treated process water from basic oxygen furnace (steelmaking)	Settling, flocculation, vacuum filtration and landfilling of sludge	Outfall 003
803	Storm water runon from City of Middletown.	None	Outfall 003

Table 1. Description of AK Steel - Middletown Works Outfalls and Treatment Systems

Table 1. Continued.

Outfall	Type of Waste	Treatment System	Discharge Point
004	Blowdown from South Terminal Treament Plant (in-plant station 641), treated process water from station 642, non-contact cooling water from annealing, storm water runoff	None at final outfall (see 641/642)	North Branch Dicks Creek
641	Treated process water from cold temper mill, acid pickling, alkaline cleaning, fume scrubbers	South Terminal WWTP: Oil skimming, chemical precipitation, neutralization, chemical oxidation (aeration), flocculation, settling, vacuum filtration and landfilling of sludge.	Outfall 004
642	Treated process water from electrogalvanizing line	<i>#2 EGL WWTP</i> : Chemical precipitation, neutralization, chemical oxidation (aeration), flocculation, settling, rapid sand filtration, vacuum filtration and landfilling of sludge.	Outfall 004
015	Treated process water from hot strip mill, continuous caster and vacuum degassing (outfall 005) non-contact cooling water, storm runoff.	None at final outfall (see 005)	Dicks Creek
005	Treated process water from hot strip mill, continuous caster and vacuum degassing.	Settling, flocculation, settling, vacuum filtration and landfilling of sludge.	Outfall 015
008	Storm water runoff	None	Dicks Creek
009	Storm water runoff from AK landfill	Settling ponds	Dicks Creek
099	Calculated downstream Dicks Creek station used to determine compliance with water quality-based limit. (DRAFT PERMIT PROPOSES TO ELIMINATE THIS STATION.)		Does not physically exist.

Table 2. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfall 1ID00001002. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported; * = total cyanide value. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{max} = daily maximum analytical results.

		OEPA	OEPA	AK St	eel Application	n Form 2C	DECISIO	N CRITERIA
PARAMET	ER	07/10/2000	10/10/2000	N	mean	maximum	PEQave	PEQ _{max}
ROD	ma/l	28	~2.0	1		ND		
COD	mg/1	~10	<10	1		21		
Tee	mg/1	22	10	3/0	10.6	NP		
133	mg/1	25	709	J49 NA	NA	NA NA		
0:16.0000.00	mg/1	/30	-2.0	240	0.09	ND		
Americal	mg/1	<2.0	<2.0	249	0.08	ND	0.56	1.10
Ammonia-	N mg/1	0.770	0.392	349	0.34	1.20	0.30	1.10
NO3/NO2-	N mg/I	1.51	1.08	1 NTA	-	1.39	5.51	4.55
TKN	mg/I	0.95	0.73	NA	NA	NA		
Phosphoru	s mg/l	<0.05	0.07	1		<0.10		
Fluoride	mg/l	NA	NA	1		0.31	0.878	1.469
Cyanide, fr	ee	<5	5.44	1		<20*	4.0	5.44
Hardness	mg/l	480	533	NA	NA	NA		
Arsenic	-	6	7	1		<5	15	21
Barium		181	149	NA	NA	NA	502	688
Iron		1570	2880	1	_	1700	6307	8640
Manganese	5	115	102	1		44	252	345
Potassium		5000	3000	NA	NA	NA	13870	19000
Strontium		1270	1100	NA	NA	NA	3523	4826
Zinc		<10	<10	349	6.9	NR	32	65
Chloroforn	า	<0.5	1.82	1		<1.0	3.99	5.46
Phenolics	total	<10	38.8	1		<10	84.97	116.4

Table 3. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfall 1ID00001003. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported; * = total cyanide data. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{inax} = daily maximum analytical results.

		OEPA	OEPA	AK St	eel Application	Form 2C	DECISION	CRITERIA
PARAMETE	R	07/11/2000	10/11/2000	N	mean	maximum	PEQaye	PEQ _{max}

BOD	mg/l	14	2.3	1		ND		
COD	mg/l	33	16	1	-0004	22		
TSS	mg/l	77	26	329	24.5	NR		
TDS	mg/l	498	520	NA	NA	NA	1443	1976
Oil&grease	mg/l	<2.0	<2.0	343	0.04	NR		
Ammonia-N	mg/l	0.292	0.29	340	0.128	NR	0.19	0.33
NO3/NO2-N	mg/l	3.21	3.05	1		2.34	7.03	9.63
TKN	mg/l	0.94	0.8	NA	NA	NA		
Phosphorus	mg/l	0.21	0.22	1		<0.10		
Fluoride	mg/l	NA	NA	1	supérior	0.53	2.358	3.23
Hardness	mg/l	318	352	NA	NA	NA		
Aluminum		1490	350	NA	NA	NA	4133	5662
Arsenic		7	6	1 -	-0004	<10	19	27
Barium		158	130	NA	NA	NA	438	600
Iron		3030	1310	26	1660	NA	2242	3513
Lead		7	<2	342	ND	NR	13	18
Manganese		120	41	1	-	28	183	312
Potassium		12000	12000	NA	NA	NA	33288	45600
Strontium		854	826	NA	NA	NA	2369	3245
Zinc		81	16	342	21	NR	75	146
Bromodichle	romethane	<0.5	0.57	1		<1.0	1.58	2.17
Chloroform		<0.5	2.64	1		2.4	5.78	7.92
Hexachlorob	enzene	0.0025	< 0.0020	1		<5	0.0069	0.0095
Ris(2-ethylh	xvl)nhthalate	<10	<10	1	_	113	247	339
Phenolics, to	tal	<10	<10	1		29	63.5	87.0

Table 4. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfall 1ID00001004. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported; * = total cyanide data. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{max} = daily maximum analytical results.

		OEPA	OEPA	OEPA	AK S	teel Application	Form 2C	DECISION CRITERIA	
PARAMETE	R	07/11/2000	10/11/2000	11/07/2001	N	mean	maximum	PEQave	PEQmax
BOD	ma/l	51	55	66	1		7.0		
COD	mg/1	20	3.5	0.0	1		7.0		
TEE	mg/1	10	11	30 C	1	-	54		
TDC	mg/1	12	11	0	1		33		
105	mg/1	1890	1900	1720	NA	NA	NA	4161	5700
Ouægrease	mg/1	<2.0	2.42	<2.0	349	0.07	NR		
Ammonia-N	mg/l	0.23	0.197	0.194	349	0.179	NR	0.39	0.53
NO3/NO2-N	mg/l	1.98	2.01	1.03	1		1.88	3.82	5.23
TKN	mg/l	1.03	0.83	1.75	NA	NA	NA		
Phosphorus	mg/l	0.11	0.07	0.073	1		<0.10		
Fluoride	mg/l	NA	NA	NA	1		0.52	2.35	3.22
Cyanide, free		<5.0	<5.0	5.0	1		<20*	11	15
Hardness	mg/l	861	843	1160	NA	NA	NA		
Aluminum		397	<200	218	NA	NA	NA	869	1191
Arsenic		4	3	4.2	1	-100k	<10	9.2	12.6
Barium		95	86	57	NA	NA	NA	208	285
Copper		12	<10	<10	349	0.135	NR	22	30
Iron		1240	792	894	1		4860	9224	12636
Manganese		70	69	99	1		124	235	322
Potassium		5000	6000	5000	NA	NA	NA	13140	18000
Strontium		712	674	553	NA	NA	NA	1559	2136
Zinc		691	75	104	349	115	NR	96	184
Chloroform		< 0.5	0.72	1.35	1		<10	2 56	3 51
4-Chloro-3-m	ethylphenol	<10	<10	14.6	NA	NA	NA	32	3.51
Phenol	2 F	<2.0	<2.0	2.2	1		<10	18	-++
delta-BHC		<0.0020	<0.0021	0.031	NA	NA	NA	0.068	0.093

Table 5. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfalls 1ID00001008 and 1ID00001009. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{max} = daily maximum analytical results.

	Outfall 0	Outfall 008		1009 AK Stee	Form 2C	
PARAMETER	Form 2C		N	mean	maximum	
COD mg/l	32		23	60	NR	
TSS mg/l	7		23	8.2	NR	
Ammonia-N mg/l	NA		23	0.57	NR	
NO3/NO2-N mg/l	0.39		1		0.11	
Phosphorus mg/l	0.05		1		<0.10	
Fluoride mg/l	1.49		1		1.30	
Chlorine, T.R. mg/l	NA		NA	NA	NA	
Cvanide tot. 3	0	NA	NA	NA		
Iron	ND		1	-	390	
Lead	ND		23	ND	ND	
Manganese	ND		1	-	74	
Nickel	ND		23	2.48	57	
Selenium	ND		22	0.46	10	
Zinc	ND		23	37.1	250	

Table 6. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfall 1ID00001011. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported; * = total cyanide data. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{max} = daily maximum analytical results.

		OEPA	OEPA	AK S	teel Application	Form 2C	DECISIO	N CRITERIA
PARAMETE	R	07/11/2000	10/11/2000	N	mean	maximum	PEQayg	PEQ _{max}
BOD ₅	mg/l	7	2	1		15		
COD	mg/l	<10	12	1		30		
TSS	mg/l	14	10	470	21.7	NR		
TDS	mg/l	998	718	NA	NA	NA	2768	3792
Oil&grease	mg/l	NA	2.59	469	0.05	NR		
Ammonia-N	mg/l	2.49	3.05	470	2.38	NR	3.04	6.38
NO3/NO2-N	mg/l	2.27	2.31	1	-	5.16	11.3	15.5
TKN	mg/l	3.5	3.76	NA	NA	NA		
Phosphorus	mg/l	< 0.05	0.13	1		<0.10		
Fluoride	mg/l	NA	NA	1	-	1.51	6.83	9.36
Cyanide, free		<5	10.4	1	-	<20*	9.5	13
Hardness	mg/l	519	526	NA	NA	NA		
Aluminum		<200	498	NA	NA	NA	1381	1892
Arsenic		2	4	1		<5	11	15
Barium		74	73	NA	NA	NA	205	281
Copper		<10	<10	470	0.09	NR		
Iron		2150	3680	1		4220	9242	12660
Lead		4	7	470	1.04	NR	29	40
Manganese		175	185	1	main	166	405	555
Potassium		7000	11000	NA	NA	NA	30514	41800
Selenium		<2.0	3	51	ND	ND		
Strontium		744	722	NA	NA	NA	2064	2827
Zinc		29	160	470	56.7	NR	47	93
Chloroform		<0.5	1.41	1		1.4	3.09	4.23
Hexachlorobe	enzene	0.0023	< 0.0020	1	-	<5	0.0064	0.0087
delta-BHC		0.007	0.014	NA	NA	NA	0.039	0.053
Dieldrin		<0.0020	0.0063	NA	NA	NA	0.0175	0.0239
Heptachlor		0.0088	<0.0020	NA	NA	NA	0.0244	0.0334

Table 7. Effluent Characterization and Decision Criteria

Summary of analytical results for AK Steel outfall 1ID00001015. All values are in $\mu g/l$ unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed; NR = not reported; * = total cyanide data. Decision Criteria: PEQ_{avg} = monthly averages; PEQ_{max} = daily maximum analytical results.

		OEPA	OEPA	AK Ste	el Application	Form 2C	DECISION	<u>N CRITERIA</u>
PARAMETE	R	07/11/2000	10/11/2000	N	mean	maximum	PEQavg	PEQ _{max}
BOD ₅	mg/l	4.3	4.9	1	minim	ND		
COD	mg/l	36	37	1		44		
TSS	mg/l	45	28	347	9.49	NR		
TDS	mg/l	1080	1160	NA	NA	NA	3218	4408
Oil&grease	mg/l	2.9	4.27	347	0.43	NR		
Ammonia-N	mg/l	0.173	0.16	347	0.017	NR	0.17	0.33
NO3/NO2-N	mg/l	3.1	1.45	1		4.46	9.77	13.38
TKN	mg/l	1.16	1.07	NA	NA	NA		
Phosphorus	mg/l	0.14	0.2	1		0.13		
Fluoride	mg/l	NA	NA	1		22.4	101	139
Cyanide, free	mg/l	<5	5.63	1		<20*	16	21
Hardness	mg/l	481	499	NA	NA	NA		
Aluminum	-	643	421	NA	NA	NA	1784	2443
Arsenic		5	5	1		<5	11	15
Barium		99	100	NA	NA	NA	277	380
Copper		10	14	1		<40	39	53
Iron		3730	10100	1	Autorite.	610	22119	30300
Lead		4	5	347	ND	ND	21	29
Manganese		126	181	1		77	396	543
Potassium		13000	14000	NA	NA	NA	38836	53200
Strontium		1070	913	NA	NA	NA	2968	4066
Zinc		123	172	347	65.2	NR	78	157
Phenolics, to	tal	<10	<10	1		15	33	45
Bis(2-ethylho	exyl)phthalate	<10	<11	1		5	23	31
Aldrin		< 0.0020	0.013	NA	NA	NA	0.036	0.049
alpha-BHC		< 0.0020	0.0061	NA	NA	NA	0.017	0.023
gamma-BHC	1	< 0.0020	0.008	NA	NA	NA	0.022	0.03
4.4'-DDD		< 0.0061	0.014	NA	NA	NA	0.039	0.053
Endrin Aldel	hyde	< 0.0061	0.014	NA	NA	NA	0.039	0.053
Heptachlor	-	0.0027	<0.0021	NA	NA	NA	0.008	0.01

Table 8. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001001. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AR SIEEL MIDDLEIOWN	WORKS (11	000001)	OUIFALL-UU.	<u>L</u>				
PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIC N	OD = JANOO 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1704	1.208	1.57	0.168-2.992
LEAD PB, TOT	ANNUAL	UG/L			242	0	43	0-109.17
		KG/DAY	6.33	10.9	242	0	0.20356	0-0.5942
OIL GRSE TOT	ANNUAL	MG/L	-		242	0	0	0-34
		KG/DAY	173	500	242	0	0	0-138.08
RESIDUE TOT NFLT	ANNUAL	MG/L			244	21	65	0-133
		KG/DAY	2706	6709	244	97.0512	323.088	0-715.37
ZINC TOTAL 0.01	ANNUAL	UG/L			109	98.5	632.66	0-1675
		KG/DAY	6.56	24.14	109	0.49005	3.06365	0-9,1801
ZINC ZN, TOT	ANNUAL	UG/L			135	0	113	0-220
·		KG/DAY	6.56	24.14	135	0	0.5777	0-1.0074

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=001

Table 9. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID0001002. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AR SIELE MIDDLEIOWN	STEEL MIDDLETOWN WORKS (TIDOUDOT) COTTALL-002									
PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIOD N	= JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE		
AMMONIA NH3-N	MAY-OCT	MG/L	2.6	11.8	339	0.4	0.9	0-4.32		
		KG/DAY	9.7	44.2	339	0.93679	3.06585	0-14.814		
	NOV-APR	MG/L		9.9	336	0.39	0.86	0-3.89		
		KG/DAY		37.1	336	0.85995	3.58644	0-8.1004		
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1558	0.668	1.401	0.045-2.069		
CYANIDE FREE	ANNUAL	MG/L	Moni	tor	18	0	0	0-0		
		MG/L	Moni	tor	313	0	0	0-0.021		
		KG/DAY			313	0	0	0-0.0514		
OIL GRSE TOT	ANNUAL	MG/L		10	675	0	0	0-9		
		KG/DAY			675	0	0	0-28.319		
PCBS WLSMPL	ANNUAL	UG/L	Moni	tor	55	0	0	0-0		
PH	ANNUAL	s.u.	6.5 t	o 9.0	422	7.2*	7.9	7-8.2		
PH MAX	ANNUAL	s.u.		9.0	580	7.1*	7.9	7-8.7		
PH MIN	ANNUAL	S.U.		6.5	580	7*	7.6	6.6-8.6		
RESIDUE TOT NFLT	ANNUAL	MG/L	Moni	tor	672	8	21	0-59		
		KG/DAY			672	20.5336	61.2262	0-216.62		
TOX-UNIT AC-CERI T	ANNUAL	TUA	Moni	tor	9	0	0	0-0		
TOX-UNIT ACU-PIME	ANNUAL	TUA	Moni	tor	9	0	0	0-0		
TOX-UNIT CHR-CERI	ANNUAL	TUC	Moni	tor	9	0	0	0-0		
TOX-UNIT CHR-PIME	ANNUAL	TUC	Moni	tor	11	0	0	0-0		
ZINC TOT REC	ANNUAL	UG/L	Moni	tor	675	0	0	0-412		
		KG/DAY			675	0	0	0-1.3879		

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=002

Table 10. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001003. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	WORKS (111	000001) 0	UTFALL=003					
PARAMETER	SEASON	UNITS	CURRENT E 30 DAY	ERMIT DAILY	PERIOD N	= JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
AMMONIA NH3-N	MAY-OCT	MG/L	Monit	or	326	0	0.38	0-0.68
		KG/DAY		A44- 4446	326	0	4.50566	0-17.671
	NOV-APR	MG/L	Monit	or	332	0	0.58	0-1.01
		KG/DAY			332	0	8.7086	0-1462.5
COLOR SEVERITY	ANNUAL	1	Monit	or	661	0	0	0-0
CONDUIT FLOW	ANNUAL	MGD	Monit	or	1501	3.14	5.97	0.21-970
IRON TOT REC	ANNUAL	UG/L	Monit	or	56	1080	2810	204-6100
		KG/DAY			56	14.8446	65.4328	1.2973-984.1
LEAD TOT REC	ANNUAL	UG/L	Monit	or	353	0	0	0-27
		KG/DAY			353	0	0	0-0.19
LEAD TREC 0.001	ANNUAL	UG/L	Monit	or	306	0	0	0-0
OIL GRSE TOT	ANNUAL	MG/L		10	644	0	0	0-8
		KG/DAY			644	0	0	0-161.7
PCBS WLSMPL	ANNUAL	UG/L	Monit	or	55	0	0	0-0
PH	ANNUAL	S.U.	6.5 to	9.0	414	7.7*	8.3	7.4-8.8
PH MAX	ANNUAL	s.u.		9.0	563	7.7*	8.3	7.2-8.7
PH MIN	ANNUAL	s.u.		6.5	563	7.4*	8.1	7-8.3
RESIDUE TOT NFLT	ANNUAL	MG/L	Monit	or	657	10	53	0-303
		KG/DAY			657	126.381	1142.46	0-99470
ZINC TOT REC	ANNUAL	UG/L	417	457	659	0	101	0-297
		KG/DAY	venue annue	9.8	659	0	1.23656	0-163.02
48HR ACU D.MAGNA	ANNUAL	% AFFECT	Monit	or	56	0	0	0-0

Table 11. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001004. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	WORKS (11	500001)	OUTFALL=004					
PARAMETER	SEASON	UNITS	CURRENT E 30 DAY	PERMIT DAILY	PERIC N	DD = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
AMMONIA NH3-N	MAY-OCT	MG/L KG/DAY	Monit	tor	355 355	0	0.51 5.7934	0-0.85 0-10.63
	NOV-APR	MG/L KG/DAY	Monit	cor	356 356	0.32 3.33307	0.54 6.21928	0-0.81 0-8.986
CONDUIT FLOW COPPER TOT REC	ANNUAL ANNUAL	MGD UG/L	Monit Monit	lor lor	1630 391	2.828 0	3.691 0	1.46-5.201 0-0
COPPER TREC 0.001 LEAD TOT REC	ANNUAL ANNUAL	UG/L UG/L	Monit Monit	tor	320 391	0	0	0-0 0-0
LEAD TREC 0.001 OIL GRSE TOT	ANNUAL ANNUAL	UG/L MG/L	Monit	or 10	320 711	0	0	0-0 0-9
PH	ANNUAL	KG/DAY S.U.	 6.5 to	9.0	711 456	0 7.2*	0 7.7	0-111.43 7-8.4
PH MAX PH MIN	ANNUAL ANNUAL	S.U. S.U.		9.0 6.5	591 591	7.6* 7.1*	8.3 7.7	7.4-9.2 6.7-8
ZINC TOT REC	ANNUAL	UG/L KG/DAY	417	457 6.04	711 711	64 0.66132	184 2.10635	0-1160 0-12.645
21DAYDAP NIAMAGNA 48HRDAPH NIAMAGNA	ANNUAL ANNUAL	TUC TUA	1.0	1.0	19 19	0	0	0-0 0-0
Table 12. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001005 and calculated station 1ID00001099. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK	STEEL	MIDDLETOWN	WORKS	(1ID00001)	<i>OUTFALL=005</i>
----	-------	------------	-------	------------	--------------------

PARAMETER	SEASON	UNITS	CURRENT 1 30 DAY	PERMIT	PERIC	OD = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Monit	tor	1701	0.358	0.861	0-2.69
LEAD PB, TOT	ANNUAL	UG/L			243	0	25	0-43
		KG/DAY	0.23	0.68	243	0	0.03456	0-0.1297
OIL GRSE TOT	ANNUAL	MG/L			244	5	12	0-27
		KG/DAY	227	227	244	5.70021	31.1354	0-73.111
PH	ANNUAL	s.u.	6.5 to	o 9.0	244	8*	8.6	7.2-9.4
RESIDUE TOT NFLT	ANNUAL	MG/L			243	15	61	0-92
		KG/DAY	227	682	243	18.2588	103.671	0-391.07
ZINC TOTAL 0.01	ANNUAL	UG/L	-		110	248	698	42-1250
		KG/DAY	1.45	3.18	110	0.34276	1.43964	0-4.8418
ZINC ZN, TOT	ANNUAL	UG/L			135	162	358	0-929
		KG/DAY	1.45	3.18	135	0.19711	0.70344	0-2.6559

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=099

PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIOD N	= JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Calcu	lated	1391	7.248	10.019	3.811-86
LEAD PB, TOT	ANNUAL	UG/L			12	0	43	0-48
		KG/DAY	-		12	0	0.55812	0-0.6458
OIL GRSE TOT	ANNUAL	MG/L			12	0	0	0-34
ZINC TOT REC	ANNUAL	UG/L			621	0	96	0-171.59
		KG/DAY	8.91		621	0	2,76808	0-5.7269
ZINC ZN, TOT	ANNUAL	UG/L			12	0	58	0-168
		KG/DAY	8.91		12	0	0	0-1.4608

Table 13. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001009. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

DADAMENED	CFACON	INTES	CURRENT PERMIT	PERIOD	= JAN00	THRU DEC04	RANGE
PARAMETER	SEASON	UNIIG	50 DAI DAIDI	**	30 2012		144,62
AMMONIA NH3-N	MAY-OCT	MG/L	Monitor	25	0	1.02	0-1.27
		KG/DAY		25	0	2.36661	0-3.038
	NOV-APR	MG/L	Monitor	26	0.4	2.06	0-2.12
		KG/DAY	1000 ANY	26	0.98175	3.57955	0-4.4833
ARSENIC TOT REC	ANNUAL	UG/L	Monitor	51	0	0	0-0
CADMIUM TOT REC	ANNUAL	UG/L	Monitor	29	0	0	0-0
CADMIUM TREC 0.001	ANNUAL	UG/L	Monitor	22	0	0	0-0
CHROMIUM HEX-DIS	ANNUAL	UG/L	Monitor	29	0	0	0-0
COD	ANNUAL	MG/L	Monitor	51	36	68	0-231
		KG/DAY		51	85.435	143.891	0-753.68
CONDUIT FLOW	ANNUAL	MGD	Monitor	1502	0	0.536	0-1.207
COPPER TOT REC	ANNUAL	UG/L	Monitor	29	0	0	0-0
COPPER TREC 0.001	ANNUAL	UG/L	Monitor	20	0	0	0-0
CYANIDE FREE	ANNUAL	MG/L	Monitor	29	0	0	0-0
CYANIDE FREE	ANNUAL	MG/L	Monitor	22	0	0	0-0
LEAD TOT REC	ANNUAL	UG/L	Monitor	29	0	0	0-0
LEAD TREC 0.001	ANNUAL	UG/L	Monitor	22	0	0	0-0
MERCURY TOT REC	ANNUAL	UG/L	Monitor	29	0	0	0-0
MERCURY TOT REC	ANNUAL	UG/L	Monitor	22	0	0	0-0
NICKEL TOT REC	ANNUAL	UG/L	Monitor	29	0	0	0-0
NICKEL TREC 0.01	ANNUAL	UG/L	Monitor	22	0	0	0-0
OIL GRSE TOT	ANNUAL	MG/L	Monitor	51	0	0	0-0
PH	ANNUAL	S.U.	6.5 to 9.0	97	7.4*	8.8	7.2-8.9
PLATINUM TOT	ANNUAL	UG/L	440 Mar. 746 Mar.	22	0	0	0-10
		KG/DAY		22	0	0	0-0.012
RESIDUE TOT NFLT	ANNUAL	MG/L	Monitor	51	8	24	0-39
		KG/DAY		51	19.1521	78.3949	0-93.293
SELENIUM TOT REC	ANNUAL	UG/L	Monitor	51	0	0	0-10
		KG/DAY	ana ana	51	0	0	0-0.0163
SILVER TOT REC	ANNUAL	UG/L	Monitor	51	0	0	0-0
TOX-UNIT AC-CERI T	ANNUAL	TUA	Monitor	1	0	0	0-0
TOX-UNIT ACU-PIME	ANNUAL	TUA	Monitor	1	0	0	0-0
ZINC TOT REC	ANNUAL	UG/L	Monitor	51	0	77	0-250
		KG/DAY		51	0	0.19935	0-0.4599

Table 14. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001011. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

PARAMETER	SEASON	INTES	CURRENT	PERMIT	PERIO	D = JAN00	THRU DEC04	BANGE
	0210011	01110	50 2112	<i>p</i>	••	00 1012	<i></i>	100100
AMMONIA NH3-N	MAY-OCT	MG/L	6.5		414	1.22	5.15	0-9.96
		KG/DAY	206		414	33.8067	139.686	0-286.13
	NOV-APR	MG/L	6.5		388	1.51	4.84	0-8.25
		KG/DAY	206		388	41.1124	133.68	0-270.35
CONDUIT FLOW	ANNUAL	MGD	Moni	ltor	1660	7.268	9.286	4.421-14.37
COPPER TOT REC	ANNUAL	UG/L	Moni	itor	389	0	0	0-0
COPPER TREC 0.001	ANNUAL	UG/L	Moni	ltor	413	0	0	0-41
		KG/DAY			413	0	0	0-0.8473
CYANIDE FREE	ANNUAL	MG/L		0.092	389	0	0	0-0.053
		KG/DAY		2.92	389	0	0	0-1.3169
		MG/L		0.092	410	0	0	0-0.054
		KG/DAY		2.92	410	0	0	0-1.5697
LEAD TOT REC	ANNUAL	UG/L	63	1173	389	0	0	0-44
		KG/DAY	2.0	37.2	389	0	0	0-0.9709
LEAD TREC 0.001	ANNUAL	UG/L	63	1173	410	0	0	0-202
		KG/DAY	2.0	37.2	410	0	0	0-6.8123
OIL GRSE TOT	ANNUAL	MG/L		10	802	0	0	0-15
		KG/DAY			802	0	0	0-316.12
PH	ANNUAL	S.U.	6.5 t	io 9.0	454	7.3*	8.1	7.1-8.7
PH MAX	ANNUAL	s.u.		9.0	608	7.2*	8.4	7.1-10
PH MIN	ANNUAL	S.U.		6.5	608	6.8*	7.4	5.8-8
RESIDUE TOT NFLT	ANNUAL	MG/L	Moni	ltor	801	16	64	0-335
		KG/DAY			801	428.084	1725.23	0-11352
TOX-UNIT ACU-PIME	ANNUAL	TUA	Moni	itor	20	0	0	0-1.4
ZINC TOTAL 0.01	ANNUAL	UG/L	541	564	413	0	124	0-366
		KG/DAY	17.2	17.9	413	0	3.46297	0-8.4178
ZINC ZN, TOT	ANNUAL	UG/L	541	564	389	0	83	0-136
		KG/DAY	17.2	17.9	389	0	2.58349	0-4.7862

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=011

Table 15. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001015. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	WORKS (111	000001)	OUTFALL=01:	5				
PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIC N	DD = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
AMMONIA NH3-N	MAY-OCT	MG/L KG/DAY	Moni 	tor	334 334	0	0	0-0.5 0-0.9879
	NOV-APR	MG/L KG/DAY	Moni 	tor	332 332	0 0	0	0-0.55 0-2.1665
CONDUIT FLOW LEAD TOT REC	ANNUAL ANNUAL	MGD UG/L	Moni Moni	tor tor	1531 354	0.605	1.1065 0	0.126-2.52
LEAD TREC 0.001	ANNUAL	KG/DAY UG/L	 Moni	tor	354 307	0	0 0	0-0.0516 0-0
OIL GRSE TOT	ANNUAL	MG/L KG/DAY		10	666 666	0 0	0	0-14 0-61.919
PH PH MAX	ANNUAL ANNUAL	s.u. s.u.	6.5 t 	0 9.0 9.0	415 578	7.6* 7.8*	8.3 8.5	7.3-8.6 6.1-9.5
PH MIN RESIDUE TOT NFLT	ANNUAL ANNUAL	S.U. MG/L	 Moni	6.5 tor	578 665	7.4*	8.1 23	6.6-8.4 0-117
ZINC TOT REC	ANNUAL	KG/DAY UG/L	417	457	665 354	0	66.2375 141	0-482.7
ZINC TOTAL 0.01	ANNUAL	KG/DAY UG/L KG/DAY	417	2.2 457 2.2	354 312 312	0 67 0.14962	0.3/396 221 0.69723	0-0.7824 0-470 0-1.5477

Table 16. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001613. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=613									
PARAMETER	SEASON	UNITS	CURRENT F 30 DAY	ERMIT DAILY	PERIO N	D = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE		
AMMONIA NH3-N	MAY-OCT	MG/L KG/DAY	205	410	123 123	14.3 47.744	55.2 187.274	0-62.8 0-216.92		
	NOV-APR	MG/L KG/DAY	205	410	121 121	18.8 66.295	45.8 139.925	4-87.1 0.8917-298.02		
CONDUIT FLOW CYANIDE TOT	ANNUAL ANNUAL	MGD MG/L	Monit	or	1703 135	0.875 0.022	1.199 0.126	0.001-2.303 0-16.5		
		KG/DAY MG/L	10.0	19.8	135 106	0.0652	0.4214 0.102	0-2.7715 0-2.99		
LEAD PB, TOT	ANNUAL	KG/DAY UG/L	10.0 Monit	19.8 .or	106 244 244	0	0.29341 59	0-2.8278 0-454 0-1.4383		
OIL GRSE TOT	ANNUAL	MG/L KG/DAY	Monit	.or	243	0	0.21302	0-137.72		
PH PHENOLIC 4AAP TOT	ANNUAL ANNUAL	S.U. UG/L	6.0 to	11.5	244 244	8.2* 21	9.6 64	7.8-11 0-184		
RESIDUE TOT NFLT	ANNUAL	KG/DAY MG/L	0.9 Monit	1.8 .or	244 244	0.06952 30	0.20397 89	0-0.7779 0-217		
ZINC TOTAL 0.01	ANNUAL	KG/DAY UG/L	 Monit	or	244 109	97.5811 130	324.026	0-716.77 0-2160		
ZINC ZN, TOT	ANNUAL	NG/DAY UG/L	 Monit	or	109 135	0.43291	3.06508	0-9.1812 0-283 0-1,0062		
		NG/DA1			100	0	0.00402	0 1.0002		

Table 17. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001614. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	WORKS (11	D00001)	OUTFALL=614	1				
PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIOE N) = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1703	0.328	0.49	0-1.859
LEAD PB, TOT	ANNUAL	UG/L	Moni	tor	244	0	0	0-0
NAPTHALENE	ANNUAL	UG/L	Moni	tor***	5	0	0	0-0
NO2&NO3 N-TOT	ANNUAL	MG/L			4	0	0	0-0
OIL GRSE TOT	ANNUAL	MG/L	Moni	tor	244	0	0	0-6
		KG/DAY			244	0	0	0-8.7661
PH	ANNUAL	s.u.	6.5 t	o 9.0	244	7.9*	9.4	7.2-10
RESIDUE TOT NFLT	ANNUAL	MG/L	Moni	tor	240	0	6	0-11
		KG/DAY			240	0	7.75925	0-20.568
TETRACHLOROETHYL	ANNUAL	UG/L	Moni	tor****	5	0	0	0-0
ZINC TOTAL 0.01	ANNUAL	UG/L	Moni	tor	109	0	100	0-227
		KG/DAY			109	0	0.15391	0-0.4683
ZINC ZN, TOT	ANNUAL	UG/L	Moni	tor	135	0	66	0-146
		KG/DAY			135	0	0.04276	0-0.2912

*** - naphthalene maximum limit = 0.25 kg/day

**** - tetrachlorethylene maximum limit = 0.37 kg/day

Table 18. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfalls 1ID00001631 and 1ID00001641. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=631

PARAMETER	SEASON	UNITS	CURRENT	PERMIT DAILY	PERIC	$D = JAN00^{\circ}$ 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1703	0.108	0.146	0-5.8472
LEAD PB, TOT	ANNUAL	UG/L			241	20	73	0-471
- ·		KG/DAY	1.00	3.75	241	0.00408	0.03346	0-0.5909
PH	ANNUAL	S.U.	6.0 t	o 11.5	241	7.6*	9	6-9.4
RESIDUE TOT NFLT	ANNUAL	MG/L			241	13	30	0-108
		KG/DAY	400	1264	241	5.01891	13.8455	0-543.19
ZINC TOTAL 0.01	ANNUAL	UG/L			108	795	2020	10-3600
		KG/DAY	1.80	4.39	108	0.27534	1,1919	0.0036-22.369
ZINC ZN, TOT	ANNUAL	UG/L		-	133	944	2230	182-4130
		KG/DAY	1.80	4.39	133	0.37555	0.9872	0.0038-1.5319

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=641

PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIC N	D = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1703	2.244	2.786	0.96-9.118
LEAD PB, TOT	ANNUAL	UG/L	* * *	* * *	244	0	0	0-0
NAPTHALENE	ANNUAL	UG/L	* * *	* * *	5	0	0	0-0
OIL GRSE TOT	ANNUAL	MG/L			244	0	0	0-6
		KG/DAY	308	867	244	0	. 0	0-53.096
PH	ANNUAL	S.U.	6.0 t	o 11.5	239	7.1*	8	6.9-8.7
RESIDUE TOT NFLT	ANNUAL	MG/L			244	7	15	0-32
		KG/DAY	553	1224	244	61.018	141.994	0-289.96
TETRACHLOROETHYL	ANNUAL	UG/L	* * *	* * *	5	0	0	0-0
ZINC TOTAL 0.01	ANNUAL	UG/L			109	0	58	0-100
		KG/DAY	1.32	1.65	109	0	0.50595	0-0.6409
ZINC ZN, TOT	ANNUAL	UG/L			135	0	0	0-232
·		KG/DAY	1.32	1.65	135	0	0	0-1.6052

*** - Loading limits for these parameters: Lead [1.51 kg/day (30-day), 4.12 kg/day (daily)] Naphthalene [1.27 kg/day (daily)] Tetrachloroethylene [1.91 kg/day (daily)]

Table 19. Effluent Characterization

Summary of current permit limits and unaltered monthly operating report (MOR) data for AK Steel outfall 1ID00001642. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: $PEQ_{avg} = monthly$ average; $PEQ_{max} = daily maximum analytical results$.

AK SIEEL MIDDLEIOWN	WORKS (11	D00001)	OUTFALL=642					
PARAMETER	SEASON	UNITS	CURRENT 30 DAY	PERMIT DAILY	PERIO N	D = JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
CHROMIUM TOT 0.01	ANNUAL	UG/L	1368	2216	104	0	0	0-0
CHROMIUM CR, TOT	ANNUAL	UG/L	1368	2216	134	0	0	0-0
CONDUIT FLOW	ANNUAL	MGD	Moni	tor	1671	0.271	0.318	0-0.338
COPPER CU, TOT	ANNUAL	UG/L	Moni	tor	238	0	0	0-100
		KG/DAY			238	0	0	0-0.1211
NICKEL NI, TOT	ANNUAL	UG/L	1904	3184	242	0	0	0-182
		KG/DAY			242	0	0	0-0.1674
OIL GRSE TOT	ANNUAL	MG/L	26	52	242	0	0	0-16
		KG/DAY		ann mìs	242	0	0	0-17.684
PH	ANNUAL	s.U.	6.0 t	o 11.5	242	8.8*	9.7	8.3-10.1
RESIDUE TOT NFLT	ANNUAL	MG/L	31	60	242	5	9	0-17
		KG/DAY			242	5.12867	9.9167	0-18.596
TTO	ANNUAL	UG/L		1704	16	0	12	0-36
		KG/DAY			16	0	0.0124	0-0.0413
ZINC ZN, TOT	ANNUAL	UG/L	1480	2610	242	64	410	0-1690
		KG/DAY		-	242	0	0.40424	0-1.4328

Table 20. Effluent Characterization

Summary of current permit requirements and unaltered monthly operating report (MOR) data for AK Steel upstream station 11D00001803 and intake 11D00001804. All values are based on annual records unless otherwise indicated. N = Number of Analyses. * = For pH, 5th percentile shown in place of 50th percentile; ** = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria: PEQ_{avg} = monthly average; PEQ_{max} = daily maximum analytical results.

AK STEEL MIDDLETOWN	N WORKS (111	00001)	OUTFALL=803					
PARAMETER	SEASON	UNITS	CURRENT PERI 30 DAY D	MIT AILY	PERIOD N	= JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
AMMONIA NH3-N	MAY-OCT	MG/L	Monitor		327	0	0	0-1.99
		KG/DAY			327	0	0	0-12.541
	NOV-APR	MG/L	Monitor		334	0	0	0-0.75
		KG/DAY			334	0	0	0-4.4133
COLOR SEVERITY	ANNUAL	UNITS	Monitor		663	0	0	0-0
CONDUIT FLOW	ANNUAL	MGD	Monitor		1510	0.071	1.678	0.001-7.413
IRON TOT REC	ANNUAL	UG/L	Monitor		67	490	2280	0-2920
		KG/DAY			67	0.15624	4.77137	0-16.596
LEAD TOT REC	ANNUAL	UG/L	Monitor		353	0	0	0-0
LEAD TREC 0.001	ANNUAL	UG/L	Monitor		308	0	0	0-0
OIL GRSE TOT	ANNUAL	MG/L	Monitor		661	0	0	0-8
		KG/DAY			661	0	0	0-46.26
PCBS WLSMPL	ANNUAL	UG/L	Monitor		56	0	0	0-0
PH	ANNUAL	S.U.	Monitor		661	7.3*	8.2	7-9
RESIDUE TOT NFLT	ANNUAL	MG/L	Monitor		660	8	46	0-222
		KG/DAY			660	0.60182	99.0383	0-924.73
ZINC TOT REC	ANNUAL	UG/L	Monitor		661	0	61	0-319
		KG/DAY			661	0	0.01	0-1.2048

AK STEEL MIDDLETOWN WORKS (11D00001) OUTFALL=804

PARAMETER	SEASON	UNITS	CURRENT PERMIT 30 DAY DAILY	PERIOD N	= JAN00 50 PCTL	THRU DEC04 95 PCTL	RANGE
21D CHR D.MAGNA	ANNUAL	<pre>% AFFECT</pre>	Monitor	19	0	0	0-0
48HR ACU D.MAGNA	ANNUAL	<pre>% AFFECT</pre>	Monitor	53	0	0	0-0
48H ACU C.DUBIA	ANNUAL	%AFFTUA	Monitor	18	0	0	0-0
7DAY CHRC.DUBIA	ANNUAL	%AFFTUC	Monitor	18	0	0	0-0
7DAY CHRPIMEPHAL	ANNUAL	%AFFTUC	Monitor	18	0	0	0-0
96H ACU PIMEPHAL	ANNUAL	%AFFTUA	Monitor	18	0	0	0-0

TEST			Ceriodaphnia	dubit 48 hou	r				Fathead Mir	nows 96 ho	ur	
DATE(a)	UP ^b	Ce		% M ⁱ	TUa ^s	NF ^h	UP ^b	C	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^h
06/98 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
08/98 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
12/98 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
06/99 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
12/99 E)	0	0	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/00 (E)	0	0	>100	0	<1.0	NT	0	0-2.5	>100	0	<1.0	NT
07/00 (O)	100	0	>100	5	<1.0	15	15	0	>100	0	<1.0	0
10/00 (O)	0	0	>100	0	<1.0	0	0	0	>100	0	<1.0	0
12/00 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
06/01 (E)	0	0	>100	0	<1.0	NT	0	0	>100	0	<1.0	NT
12/01 (E)	0	0	>100	0	<1.0	NT		0-2.5	>100	0-2.5	<1.0	NT
06/02 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
08/02 (E)	NT	NT	NT	NT	NT	NT	0	NR	>100	0	<1.0	NT
12/02 (E)	<u> </u>	I	I	1	I	I	0	NR	>100	0	<1.0	NT
03/03 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
06/03 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
12/03 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
06/04 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
12/04 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
06/05 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
12/05 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
06/06 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT
12/06 (E)	0	NR	>100	0	<1.0	NT	0	NR	>100	0	<1.0	NT

Table 21. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001002.

^b UP = upstream control water ^c C = laboratory water control

^d LC₅₀ = Median Lethal Concentration $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database (not required on monthly form)

^f %A = Percent Adversely Affected in 100% effluent ^g TUa = Acute Toxicity Units ^h NF = Near Field Sample In the Great Miami River ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

I = Invalid test

TEST			Daphnia mag	na 48 hour					Fathead Min	nows 96 hoi	ur	
DATE(a)	UP ^b	C¢	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^h	U₽ ^ь	C	LC ₅₀ ^d	%M ⁱ	TUa ^g	NF ^h
03/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/98 (E)	0	0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
08/98 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/98 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/98 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/99 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/00 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/00 E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 22. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001003.

^b UP = upstream control water

° C = laboratory water control

- ^d LC_{50} = Median Lethal Concentration
- EC_{50} = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database (not required on monthly form)

^f %A = Percent Adversely Affected in 100% effluent ^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

TEST			Daphnia maj	gna 48 hour					Fathead Mir	nnows 96 ho	our	
DATE(a)	UP ⁶	C	LC ₅₀ ^d	% Mʻ	TUa ^g	NF ^h	UP ^b	C	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^b
04/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/00 (O)	10.0*	0-10*	>100*	0*	<1.0*	0*	0	0	>100	0	<1.0	0
08/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/00 (E)	0	0	>100	0	<1.0	NT	NΤ	NT	NT	NT	NT	NT
10/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/00 (O)	0*	0-5*	>100*	0*	<1.0*	0*	0	0	>100	0	<1.0	0
11/00 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NŤ	NT
02/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/01 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/01 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/01 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/02 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 22. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001003 - continued.

^b UP = upstream control water ^c C = laboratory water control

- ^d LC_{50} = Median Lethal Concentration ^e EC_{50} = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database (not required on monthly form)

^f %A = Percent Adversely Affected in 100% effluent

^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

TEST			Daphnia mag	na 48 hour					Fathead Min	nows 96 hoi	ır	
DATE(a)	UP ^b	C¢	LC ₅₀ ^d	%M ⁱ	TUa ^g	NF ^h	UP ^b	C¢	LC ₅₀ ^d	%M ⁱ	TUa ^g	NF
03/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/02 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/02 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/03 (E)	NT	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 22. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001003 - continued.

^b UP = upstream control water

 $^{\circ}$ C = laboratory water control

^d LC_{50} = Median Lethal Concentration

 $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database

(not required on monthly form)

^f %A = Percent Adversely Affected in 100% effluent ^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

TEST			Daphnia ma	gna 48 hour					Fathead Mit	nnows 96 ho	ur	
DATE(a)	UP ⁶	C*		% M ¹	TUa ^g	NF ^h	UP ^b	C°	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^h
06/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
01/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
02/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
04/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
05/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
09/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 22. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001003 - continued.

^b UP = upstream control water

^c C = laboratory water control

^d LC₅₀ = Median Lethal Concentration

 $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database (not required on monthly form)

^f %A = Percent Adversely Affected in 100% effluent ^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

TEST			Daphnia mag	gna 48 hour					Fathead Mir	nnows 96 ho	ur	
DATE(a)	UP ^b	C¢	LC ₅₀ ^d	% M'	TUa ^g	NF ^h	UP ^b	C°	LC ₅₀ ^d	%M ⁱ	TUa ^g	NF ^b
03/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/98 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/99 (E)	0	0-10	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/99 (E)	0	0-20	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/99 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/00 (E)	0	0-10	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
07/00 (O)	5*	0-5*	38.2*	100*	2.6*	100*	0	0	>100	0	<1.0	100
08/00 (E)	0	0-10	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
10/00 (O)	85*	0*	>100*	0*	<1.0*	0*	0	0	>100	0	<1.0	0
12/00 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
11/01 (O)	0*	0*	>100*	0*	<1.0*	0*	0	0	>100	0	<1.0	0
12/01 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/02 (E)	0	0	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/02 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 23. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001004.

^b UP = upstream control water

 $^{\circ}$ C = laboratory water control

^d LC_{50} = Median Lethal Concentration

 $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

^f %A = Percent Adversely Affected in 100% effluent

^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

NR = not reported in Ohio EPA database (not required on monthly form)

TEST			Daphnia ma	gna 48 hour					Fathead Mit	nnows 96 ho	ur	
DATE(a)	UP ^b	C		%M ⁱ	TUa ^g	NF ^b	UP ^b	Ce	LC ₅₀ ^d	%M¹	TUa ^s	NF ^h
06/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/03 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/04 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/05 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
03/06 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
06/06 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
08/06 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT
12/06 (E)	0	NR	>100	0	<1.0	NT	NT	NT	NT	NT	NT	NT

Table 23. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001004 - continued.

 * O = EPA test; E = entity test

^b UP = upstream control water

^c C = laboratory water control

^d LC_{50} = Median Lethal Concentration

 $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

NR = not reported in Ohio EPA database (not required on monthly form) ^f %A = Percent Adversely Affected in 100% effluent

^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

* = Ceriodaphnia dubia test results.

TEST			Ceriodaphnia	dubia 48 hor	ır				Fathead Mir	nows 96 h	ou r	
DATE(a)	UP ^b	C°	LC ₅₀ ^d	%Mʻ	TUa ^g	NF ^h	UP ^b	C	LC ₅₀ ^d	%M'	TUa ^s	NF ^h
Outfall 008												
12/00 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
Outfall 009												
01/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
04/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
05/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
07/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
10/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
12/99 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
12/00 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT
Outfall 015												
07/00 (O)	100	0-5	>100	5-10	<1.0	80	0	0-5	>100	0-5	<1.0	5
10/00 (O)	5	0	>100	0-10	<1.0	0	5	0	>100	0-5	<1.0	0
10/00 (E)	0	0	>100	0	<1.0	NT		0	>100	0	<1.0	NT

Table 24. Summary of ACUTE toxicity test results on the AK Steel effluent from outfalls 1ID00001008, 1ID00001009 and 1ID00001015.

^a O = EPA test; E = entity test

^b UP = upstream control water

 $^{\circ}$ C = laboratory water control

^d LC_{50} = Median Lethal Concentration

 $^{\circ}$ EC₅₀ = Median effects concentration

NT = not tested

^f %A = Percent Adversely Affected in 100% effluent ^g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

¹%M = Percent Mortality in 100% effluent

ND = not determined

TEST			Ceriodaphnia d	lubia 48 hou	ır				Fathead Mir	nows 96 ho	ur	
DATE(a)	UP ^b	C°	LC ₅₀ ⁴	% M ⁱ	TUa ^s	NF ^b	UP ^b	C¢	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^h
03/98 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/98 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/98 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/98 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/99 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/99 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/99 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/99 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/00 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/00 (E)	NT	NT	NT	NT	NT	NT	0	0	70.7	100	1.4	NT
07/00 (O)	0	0-5	>100	0-15	<1.0	0	5	0-5	>100	0	<1.0	0
08/00 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
10/00 (O)	0	0	>100	0-15	<1.0	0	0	0	>100	0-15	<1.0	15
12/00 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/01 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/01 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/01 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/01 (E)	NT	NT	NŤ	NT	NT	NT	0	NT	>100	0	<1.0	NT
03/02 (E)	NT	NT	NT	NT	NT	NT	0		>100	0	<1.0	NT
06/02 (E)	NT	NT	NT	NT	NT	NT	0		>100	0	<1.0	NT
08/02 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/02 (E)	NT	NT	NT	NT	NT	NT	0		>100	0	<1.0	NT
03/03 (E)	NT	NT	NT	NT	NT	NT	0		>100	0	<1.0	NT

Table 25. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001011.

^b UP = upstream control water

^c C = laboratory water control

^d LC_{50} = Median Lethal Concentration

 $e_{EC_{50}}$ = Median effects concentration

NT = not tested

 f %A = Percent Adversely Affected in 100% effluent g TUa = Acute Toxicity Units

^h NF = Near Field Sample In the Great Miami River

ⁱ %M = Percent Mortality in 100% effluent

ND = not determined

TEST			Ceriodaphnia	dubia 48 hoi	ır				Fathead Mir	inows 96 ho	ur	
DATE(a)	UP ^b	Ct	LC ₅₀ ^d	%Mʻ	TUa ^g	NF ^h	UP ^b	Ce	LC ₅₀ ^d	% M ⁱ	TUa ^g	NF ^h
03/03 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/03 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/03 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/03 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/04 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/04 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/04 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/04 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/05 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
04/05 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/05 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/05 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/05 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
03/06 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
06/06 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
08/06 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT
12/06 (E)	NT	NT	NT	NT	NT	NT	0	0	>100	0	<1.0	NT

Table 25. Summary of ACUTE toxicity test results on the AK Steel effluent from outfall 1ID00001011 - continued.

^b UP = upstream control water

^c C = laboratory water control

^d LC_{50} = Median Lethal Concentration ^e EC_{50} = Median effects concentration

NT = not tested

^f %A = Percent Adversely Affected in 100% effluent

^g TUa = Acute Toxicity Units ^h NF = Near Field Sample In the Great Miami River

¹%M = Percent Mortality in 100% effluent

ND = not determined

Test Date (a)					Ceri	odaphnia dul	ia 7-Day							Fath	ead Minn	ows 7-Day		
	UP ^b	Cc	IC ₂₅ ^d	TU _c *		Survival		R	eproduction		FF	UP ^b	C°	IC ₂₅ ^d	TUc	Survival	Growth	FF ⁱ
					LOEC	NOEC	TU _c ^h	LOEC	NOEC	TU _c ^h						STU _c ⁱ	GTU _c *	
06/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
08/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
12/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	10	ND	ND	<1.0	<1.0	NT
06/99 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NŢ	0	5	ND	ND	<1.0	<1.0	NT
12/99 E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/00 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
12/00 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	5	ND	ND	<1.0	<1.0	NT
12/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/02 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	NR	ND	ND	<1.0	<1.0	NT
12/02 (E)	T			T	<u>т</u>	1	T	T	I	I	NT	0	NR	ND	ND	<1.0	<1.0	NT
01/03 (E)	NT	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NR	ND	ND	<1.0	<1.0	NT

Table 26. Summary of CHRONIC toxicity test results on the AK Ste	eel effluent from outfall 1ID00001002.
--	--

^aO = EPA test; E = entity test ^bUP = upstream control water ^cC = laboratory water control ^dIC₂₅ = inhibition concentration twenty-five ^eTU_c = chronic toxicity units based on IC₂₅ ^fLOEC = lowest observed effects concentration ^pNOEC = no observed effects concentration I = Invalid test ^bTU_c = chronic toxicity units ⁱFF = far-field effect ^jSTU_c = TUc for survival ^kGTU_c = TUc for growth NT = not tested ND = not determined NR = not reported in OEPA database

Test Date (a)		Ceriodaphnia dubia 7-Day												Fath	ead Minn	ows 7-Day		
	UP ^b	C¢	IC ₂₅ ^d	TU _c ^e		Survival		R	eproduction		FF ⁱ	UP ^b	C°.	IC ₂₅ ^d	TU	Survival	Growth	FF ⁱ
					LOEC	NOEC	TU _c ^h	LOEC'	NOEC	TU _c ^h						STU _c ^j	GTU _c ¹	
06/03 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
12/03 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/04 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	10	ND	ND	<1.0	<1.0	NT
12/04 E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/05 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
12/05 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
06/06 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	2.5	ND	ND	<1.0	<1.0	NT
12/06 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	0	NR	ND	ND	<1.0	<1.0	NT

Table 26.	Summary of CHRONIC toxic	y test results on the Al	Steel effluent from	outfall 1ID00001002 - continued.
-----------	--------------------------	--------------------------	---------------------	----------------------------------

 $^{a}O = EPA$ test; E = entity test

^bUP = upstream control water

^cC = laboratory water control ^dIC₂₅ = inhibition concentration twenty-five ^TU_c = chronic toxicity units based on IC₂₅

^fLOEC = lowest observed effects concentration

^gNOEC = no observed effects concentration

I = Invalid test

^bTU_c = chronic toxicity units ⁱFF = far-field effect ^jSTU_c = TUc for survival ^kGTU_c = TUc for growth NT = not testedND = not determined NR = not reported in OEPA database

Test Date (a)		Daphnia magna 21-Day												Fath	ead Minn	ows 7-Day								
	UP ^b	C	IC ₂₅ ^d	TU _e *		Survival		R	eproduction		FF ⁱ	UP ^b	C°	IC ₂₅ ^d	TU	Survival	Growth	FF ⁱ						
					LOEC	NOEC	TU _c ^h	LOEC	NOEC	TU _c ^h						STU _c ^j	GTU _c *							
03/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
06/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
08/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
10/98 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
12/98 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
03/99 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
06/99 (E)	0	10	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
08/99 (E)	0	10	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
12/99 E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
03/00 (E)	0	10	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						
06/00 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT						

Table 27.	Summary of CHRONIC	toxicity test results of	on the AK Steel	effluent from outfall	1ID00001004
-----------	--------------------	--------------------------	-----------------	-----------------------	-------------

 $^{a}O = EPA$ test; E = entity test

^bUP = upstream control water

 $^{\circ}C = laboratory water control$

 ${}^{d}IC_{25}$ = inhibition concentration twenty-five ${}^{c}TU_{c}$ = chronic toxicity units based on IC₂₅

^fLOEC = lowest observed effects concentration

^gNOEC = no observed effects concentration

 ${}^{b}TU_{c} = chronic toxicity units$ i FF = far-field effect $^{j}STU_{c} = TUc$ for survival $^{\rm k}{\rm GTU}_{\rm c}$ = TUc for growth NT = not testedND = not determinedNR = not reported in OEPA database

Test Date (a)		Daphnia magna 21-Day												Fath	ead Minn	ows 7-Day		FF ⁱ NT NT					
	UP ^b	C°	IC ₂₅ ^d	TUe		Survival		R	eproduction		FFi	UP ^b	C	IC ₂₅ ^d	TUe	Survival	Growth	FF'					
					LOEC	NOEC	TU _c ^h	LOEC	NOEC	TU _c ^h						STU	GTU _c ^k						
08/00 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
12/00 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
03/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
06/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
08/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
12/01 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
03/02 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
06/02 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
08/02 (E)	0	0	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
12/02 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					
03/03 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT					

Table 27.	Summary of CHRONIC toxicity	test results on the AK S	Steel effluent from outfa	11 1ID00001004 - continued.
-----------	-----------------------------	--------------------------	---------------------------	-----------------------------

^aO = EPA test; E = entity test ^bUP = upstream control water ^cC = laboratory water control ^dIC₂₅ = inhibition concentration twenty-five ^cTU_c = chronic toxicity units based on IC₂₅

^fLOEC = lowest observed effects concentration

^sNOEC = no observed effects concentration

 ${}^{\rm b}{\rm T}{\rm U}_{\rm c}$ = chronic toxicity units ⁱFF = far-field effect ${}^{j}STU_{c} = TUc$ for survival $^{k}GTU_{c} = TUc$ for growth NT = not testedND = not determinedNR = not reported in OEPA database

Test Date (a)		Daphnia magna 21-Day												Fath	ead Minn	ows 7-Day		
	UP ^b	C°	IC ₂₅ ^d	TUc		Survival		R	eproduction		FF	UP ^b	C°	IC ₂₅ ^d	TUc	Survival	Growth	FF
					LOEC	NOEC	TU _c ^h	LOEC	NOEC ²	TU _c ^h						STU _c ^j	GTU _c ^k	
06/03 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
08/03 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
12/03 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
03/04 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
06/04 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
08/04 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
12/04 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
03/05 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
06/05 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
08/05 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
12/05 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
03/06 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
06/06 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
08/06 (E)	0	NR	ND	ND	>100	100	<1.0	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT
12/06 (E)	0	NR	ND	ND	>100	100	<10	>100	100	<1.0	NT	NT	NT	NT	NT	NT	NT	NT

Table 27. Summary of CHRONIC toxicity test results on the AK Steel effluent from outfall 1ID00001004 - continued.

 $^{a}O = EPA$ test; E = entity test

^bUP = upstream control water

^cC = laboratory water control

 ${}^{d}IC_{25}$ = inhibition concentration twenty-five TU_c = chronic toxicity units based on IC₂₅

^fLOEC = lowest observed effects concentration

^gNOEC = no observed effects concentration

AK Steel - Middletown NPDES Fact Sheet Page 60

 ${}^{\rm b}TU_{\rm c}$ = chronic toxicity units i FF = far-field effect ${}^{j}STU_{c} = TUc$ for survival ${}^{k}GTU_{c} = TUc$ for growth NT = not testedND = not determinedNR = not reported in OEPA database

Chemical	2003 Release	2004 Release	2005 Release ^g
Ammonia	5504ª	4945°	8362
Cvanide	34 ^b	100 ^b	130
Dioxin and			
dioxin-like compounds	0.03 ^b	0 (no release rep.)	0 (no release rep.)
Ethylene glycol	13,984°	14,921°	14,921
Lead compounds	36 ^d	31 ^f	33
Manganese compounds	150°	150 ^c	150
Nitrate compounds	99,598 ^b	124,237 ^b	116,772
Phenol	84 ^b	69 ^b	58

Table 28.Water releases reported by AK Steel in the Toxics Release Inventories for 2003 and 2004.All values are pounds/year.

a 139 pounds released to Dick's Creek; 5365 pounds released to the Great Miami River.

b to the Great Miami River.

c to Dick's Creek.

d 6 pounds released to Dick's Creek; 26 pounds released to the Great Miami River.

e 43 pounds released to Dick's Creek; 4902 pounds released to the Great Miami River.

f 20 pounds released to Dick's Creek; 11 pounds released to the Great Miami River.

g 2005 OEPA data summary does not indicate which stream pollutants were released to

RIVER MILE		Mod.			Use Attain-	
Fish/Macro.	IBI	Iwb	ICI	QHEI	Ment Status	Comments
Great Miami Ri	ver (200	0)				
	E	Castern C	orn Belt	Plains	WWH Use Desi	gnation (existing)
51.5/51.5	50	10.4	42	76.0	FULL	Ust. AK 011
51.4/51.4	40	7.5	4	-	NA	AK 011 mixing zone
51.3/51.3	45	8.6	36	73.5	FULL	Dst. AK 011
50.9/50.9	50	9.5	48	76.0	FULL	Ust. Elk Creek
49.3/49.3	45	8.9	52	70.5	FULL	SR 73
Great Miami Ri	ver (199	5)				
<i></i>	Ec	stern Co	orn Belt	Plains -	WWH Use Desi	ignation (Existing)
58.4B/58.3	46	8.9	48	88.0	FULL	dst. Clear Creek
55.1B/55.0	44	9.8	46	83.0	FULL	SR 4
52.4B/ -	29*	7.1*		56.5	[NON]	SR 122, impounded
52.0B/51.5	39ns	9.5	44	78.	FULL	dst. new Middletown Dam
51.40B/51.40	35	6.2	8	51.0	NA	AK Steel 001 mixing zone
51.3B/51.3	33*	7.5*	38	52.5	PART.	dst. AK Steel
51.0B/50.9	28*	8.4ns	38	60.5	PART.	ust. Elk Creek
49.1B/49.3	35*	7.8*	40	75.5	PART.	SR 73
Dieka Creek (20	001					
DICKS Creek (20	100) F	astorn C	orn Ralt	Plains	WWH Use Desi	anation (aristing)
_/7.0		usiem C	MGns	-	(FULL)	Union Rd
-11.5 6 AI6 A	- 26*	NΔ	MGns	58.0	NON	Hendrickson Rd
5 5/5 6	26*	NA	MCns	J8.0 AA 5	NON	Hendrickson Rd.
5.575.0	20	1N/A	MO	44.5		Ost. Chichinali-Dayton Rd.
	E	astern C	orn Belt	Plains.	MWH Use Desig	gnation (existing)
5.0/4.9	40	NA	24	40.5	FULL	Dst. N. Br. / AK 004
4.2/4.1	35	6.6	30	39.0	FULL	Dst. Shaker Cr. / ust. AK 015
3.9/3.9	32	8.0	18*	39.5	PARTIAL	Dst. AK 015 / ust. AK 003
3.7/3.7	36	8.7	20*	39.0	PARTIAL	Dst. AK 003 / ust. AK 002
2.8/2.8	42	9.2	30	41.5	FULL	Dst. AK 002 / ust. Monroe Ditch
2.6/2.6	26	6.6	26	41.0	FULL	Dst. Monroe Ditch / ust. Yankee
	F			DL		Rd.
1 7/1 7	224 E	astern C	orn Belt	riains	WWH Use Desig	gnation (existing)
1.//1./	557	/.8	34	08.3	PAKHAL	Amanda Elementary School
0.9/0.9	40	10.1	<i>3</i> 8	44.5	FULL	Main St.
0.4/0.2	50	9.7	34 ^{ns}	79.5	FULL	Nr. mouth

Table 29.Summary of the aquatic life use attainment status for the Great Miami River and Dicks Creek
based on data collected by the Ohio EPA from June to October, 1995.

Table 29. Continued.

Dicks Creek (1995)

	Ed	istern Co	rn Belt Pla	ins - M	WH Use Designati	on (Existing)
/5.2		NA	<u>VP</u> *		[NON]	ust. North Branch
5.0H/4.7	43	NA	6*	44.0	NON	dst. N. Branch & AK 004
4.4W/4.1	41	9.7	<u>P</u> *	58.5	NON	dst. Shakers Cr., ust. AK 005
/3.9			8*		[NON]	dst. AK 005
3.0W/3.7	30/22	*d 5.8/5.	6*d 12*	40.0	NON/NON	ust. AK 002, dst. AK 003
/2.8	-		12*	40.0	[NON]	ust. AK 006, dst. AK 002
2.6W/2.6	34/14	*d 7.7/4.	1*d 8*	52.0	NON/NON	dst. AK 002 & AK 006
	Ed	ustern Co	rn Belt Pla	ins - W	WH Use Designati	on (Existing)
2.4W/1.7	28*/1	2*d 4.4*/	/2.1*d 16*	62.5	NON	dst. Union Oil
0.4W/0.2	30*/1	2*d 6.9*/	/1.5*d 20*	72.5	NON	ust. mouth
North Brancl	h Dicks Cr	eek (2000))			
	E	Eastern C	, orn Belt Pl	ains WV	WH Use Designati	on (existing)
-/2.7			-	F*	-	(NON)Locust Lane
1.7/1.8	20*	NA	P* 5	2.5	NON	Roosevelt Ave.
	E	Castern Co	orn Belt Pl	ains M	WH Use Designation	on (existing)
1.0/1.0	42	NA	22 3	2.5	FULL	Ust. AK 004
0.1/0.1	47	NA	18* 5	3.0 P	ARTIAL	Dst. AK 004
North Brancl	h Dicks Cr	eek (1995	5)			
	Ed	astern Co	rn Belt Pla	ins - M	WH Use Designati	ion (Existing)
1.0H/1.0	45	NA	8*	42.0	NON	dst. culvert, ust AK 004
0.1H/0.1	48	NA	VP*	52.5	NON	dst. AK Steel 004
Shaker Cree	k (2000)					
	Ē	Eastern C	orn Belt Pl	ains W	WH Use Designati	on (existing)
1.0/1.0	<u>26</u> *	NA	F* 5	1.0	NON	Cincinnati-Dayton Rd.
0.1/0.1	$\overline{36}^{ns}$	-	F* 5	2.5 P	ARTIAL	Nr. mouth
Millers Cree	k (2000)					
	E	Eastern C	orn Belt Pl	ains W	WH Use Designation	on (existing)
0.1/0.3	28*	NA	• F*	44.	5 NON	Cincinnati-Dayton Rd.
Monroe Ditc	h (2000)					
	East	erm Corr	n Belt Plain	s WWH	Use Designation	(recommended)
1.1/1.2	44	NA	A MG ⁿ	^s 56.	5 FULL	Todhunter Rd.

* Significant departure from applicable biocriterion (>4 IBI or ICI units, >0.5 MIwb units);poor and very poor results are underlined.

Table 29. Continued.

ns Nonsignificant departure from biological criterion (<4 IBI, <4 ICI, <0.5 Miwb units). NS/EWH is based on nonsignificant departure from the recommended EWH criteria.

a Narrative evaluation used in lieu of ICI (E=Exceptional; VG= Very Good; G=Good; MG=Marginally good; F=Fair; P=Poor; VP=Very Poor).

b Qualitative Habitat Evaluation Index (QHEI) values based on Rankin (1989).

c Attainment status based on one organism group is parenthetically expressed.

d IBI and MIwb scores before and after the AK Steel 003 outfall spill during the 1995 field season in Dicks Creek.

e IBI score in Paddys Run during normal flows / and intermediate to dry conditions

B Fish sampled using the Boat Method.

H Headwater site (drainage area < 20 square miles) fish sampling was conducted using a wadeable method. W Fish sampled using the Wading Method.

R Regional reference site.

M Modified reference site.

Ecoregional Biological Criteria: (From OAC 3745-1-07, Table 7-14)												
E. Corn Belt Plains (ECBP) Interior Plateau (IP)												
INDEX - Site Type	WWH	EWH	MWHf	LRWg	WWH	EWH	MWHf					
IBI - Headwaters	40	50	24/NA	18	40	50	24/NA					
IBI - Wading	40	50	24/NA	18	40	50	24/NA					
IBI - Boat	42	48	24/30	16	38	48	24/30					
Mod. Iwb - Wading	8.3	9.4	6.2/NA	4.5	8.1	9.4	6.2/NA					
Mod. Iwb - Boat	8.5	9.6	5.8/6.6	5.0	8.7	9.6	5.8/6.6					
ICI	36	46	22/NA	14	30	46	22/NA					

f MWH (Modified Warmwater Habitat) for channelized habitats/impounded habitats. g Interim Criteria for Limited Resource Water.

Stream Name Concentration (mg/kg dry weight)										
River	Al	As	Cd	Cr	Cu	Fe	Pb	Hg	Ni	Zn
Dick's Creek										
RM 5.01	<u>5150^</u>	<u>13.1^{b-}</u>	<u>0.241^A</u>	<23.3	<u>42.0^D</u>	<u>5150^</u>	<u><31.1</u>	<u><0.04</u>	<u><31.1</u>	<u>664</u> ^E
RM 4.25	<u>6660^</u>	<u>9.04^{A+}</u>	<u>0.19^A</u>	<u><22.8</u>	<u>22.8^{B+}</u>	<u>13200^</u>	<u><30.4</u>	<u><0.05</u>	<u><30.4</u>	<u>425</u> ^E
RM 3.90	<u>5020</u> ^A	<u>6.94^{A+}</u>	<u>0.216^A</u>	<u>37.0^{C+}</u>	<u>18.0^{A+}1</u>	7500 ^A	<20.6<	0.038_2	5.7 ^A	<u>277</u> ^D
RM 2.82	<u>6280</u> ^A	<u>13.8^{c.}</u>	<u>0.59^в</u>	<u>27.7^{C+}</u>	<u>18.6^{A+}1</u>	9600 ^A	<u>25.3</u> ^A	<u>0.07+</u>	<u><24.1</u>	<u>389</u> ^D
RM 2.6	<u>5640^</u>	<u>9.41^{A+}</u>	<u>0.863^c</u>	<u>21.2^{B+}</u>	<u>12.7^{A+}8</u>	<u>8980^</u>	<u><28.3</u>	<u>0.06+</u>	<u>29.7^в</u>	<u>190</u> ^c
RM 1.75	<u>7880^</u>	<u>12.6^{B-}</u>	<u>0.34</u> ^A	<u>21.0^{B+}</u>	<u>17.6^{A+}1</u>	6200 ^A	<u>28.9</u> ^A	<u>0.05+</u>	<25.2	<u>220</u> ^C
RM 0.93	<u>8430</u> ^A	<u>17.0^{c.}</u>	<u>0.803^c</u>	<u>22.8^{B+}</u>	<u>23.6^{B+}</u>	<u>20100^</u>	<u>38.3</u> ^A	<u>0.05</u> ⁺ <	<29.4	<u>462</u> ^E
RM 0.20a	<u>8300^</u>	<u>8.34^{A+}</u>	<u>0.598^b</u>	<u><22.2</u>	<u>14.8^{A+}</u>	15400 [^]	<u><29.5</u>	<u><0.04</u>	<u>26.5</u>	<u>256</u> ^D
RM 0.20b	<u>7390^</u>	<u>8.35^{A+}</u>	<u>0.795^c</u>	<u><19.9</u>	<u>13.9^{A+}</u>	<u>14500^</u>	<u><26.5</u>	<u><0.05</u> <	<29. <u>5</u>	<u>253</u> ^D
North Branch Dick's	North Branch Dick's Creek									
RM 1.7	<u>10400^</u>	<u>6.84^{A+}</u>	<u>0.465^{A+}</u>	<u>19.1^{A+}</u>	<u>13.7^{A+}1</u>	. <u>6600^</u>	<u>32.3</u> ^A	<u>0.03</u> <	<u><21.9</u>	<u>85.9</u> ^A

Table 30. Concentrations of heavy metals in the sediments of Dicks Creek, from samples collected during 2000. Parameter concentrations were evaluated based on Ohio E{PA sediment reference sites (1995), and MacDonald (2000) Sediment Quality Guidelines.

For descriptions of sampling site locations and metals analyzed, see next page.

Ohio EPA Guidelines:

A Non-elevated	В	Slightly elevated
C Elevated	D	Highly elevated
E Extremely elevated		

MacDonald Sediment Quality Guidelines:

Three toxicity ranges -

<TEC = +	Threshold effect concentration	1 - below which	ch adverse	effects are	unlikely to
	occur.				

TEC-EEC = - Above which adverse effects frequently occur

>EEC = - Extreme effect concentration - above which adverse effects usually or always occur.

River Mile	Location
5.01	downstream N. Branch
4.25	dst. Shaker Creek
3.90	Dst. outfall 015 Ust. outfall 003
2.82	Dst. outfall 002
2.6	Ust. Yankee Road Dst. Landfill tributary
1.75	At Amanda School
0.93	Main Street (Excello)
0.20	Ust. mouth
N Br. 1.7	

Table 30. continued (Locations and symbols).

Symbol	Metal Parameter
Al	Aluminum
As	Arsenic
Cd	Cadmium
Cr	Chromium
Cu	Copper
Fe	Iron
Pb	Lead
Hg	Mercury
Ni	Nickel
Zn	Zinc

Table 51. Efficient Data for A	K SIEEI	11 (*	и.	A	N.4
D	* * ·.	# OI	#>	Average	Maximum
Parameter	Units	Samples	MDL	PEQ	PEQ
Outfall 002 - LEAPS Data		215	101	0.50	1.10
NH ₃ -N (summer)	mg/l	245	131	0.56	1.10
NH_3 -N (winter) mg/l	187	135	0.67	1.17	
Cadmium	μg/l	48	0		
Fluoride	μg/l	12	11	878.0	1469.0
PCBs ^A	μg/l	58	0		
Selenium	μg/l	52	0		
Silver	μg/l	48	0		
Zinc	μg/l	686	48	32.	65.
Outfall 002 - LEAPS and OEI	PA Data				
Cyanide, free	μg/l	46	1	4.0	5.44
Outrall 002 - OEPA and 2c D	ata	2	2	15 22	21.0
Arsenic	μg/1	3	2	15.33	21.0
Barium	μg/1	2	2	502.09	087.8
Chloroform [^]	μg/I	3	1	3.99	5.46
Iron	μg/I	3	3	6307.2	8640.0
Manganese	μg/l	3	3	251.85	345.0
NO2+NO3	mg/l	3	3	3.31	4.53
Phenolics, total $\mu g/l$	3 1	84.97	116.4		
Potassium	μg/l	2	2	13870.0	19000.0
Strontium	μg/1	2	2	3522.98	4826.0
TDS	mg/l	2	2	2080.5	2850.0
Outfall 003 - LEAPS Data					
NH ₃ -N (summer)	mg/l	235	10	0.19	0.33
NH ₃ -N (winter) mg/l	189	82	0.44	0.75	
Cadmium	μg/l	48	0		
Copper	μg/l	48	0	-	-
Fluoride	μg/l	11	11	2358.0	3230.0
Iron	μg/l	57	57	2242.	3513.
Lead	μg/l	673	3	13	18
Manganese	με/Ι	11	11	183.31	311.65
PAHs	με/Ι	3	0		_
PCBs ^A	ug/l	58	0		
Phenolic 4AAP	uø/1	11	0		
Selenium	us/1	52	Õ		
Silver	110/1	48	Õ		
Zinc	۳ <i>۵</i> ۰ ۱۱۵/۱	673	230	75.	146.
Zine	MB1	0,0	<i></i>	,	1.101

Table 31. Effluent Data for AK Steel

		# of	#>	Average	Maximum
Parameter	Units	Samples	MDL	PEQ	PEQ
Outfall 003 - OEPA and 2c Data					_,
Aluminum	μg/l	2	2	4133.26	5662.0
Arsenic	μg/l	3	2	19.42	26.6
Barium	μg/l	2	2	438.29	600.4
Bis (2-ethylbexyl) phthalate ^A	ug/l	3	1	247.47	339.0
Bromodichloromethane ^A	ug/l	3	1	1.58	2.17
Chloroform ^A	ug/l	3	2	5.78	7.92
Hexachlorobenzene ^A	ug/1	3	1	0.0069	0.0095
NO2+NO3	mg/l	3	3	7.03	9.63
Phenolics, total µg/l	3 1	63.51	87.0		
Potassium	ug/1	2	2	33288.0	45600.0
Strontium	ug/1	2	2	2369.0	3245.2
TDS	mg/l	$\frac{1}{2}$	$\overline{2}$	1442.8	1976.0
105	ing/i		-		
Outfall 004 - LEAPS Data					
NH ₃ -N (summer)	mg/l	256	148	0.39	0.53
NH ₃ -N (winter) mg/l	198	137	0.44	0.62	
Cadmium	μg/l	48	0		
Chromium	μg/l	48	0	_	
Lead	μg/1	730	0	- mine	
Selenium	μg/l	51	0	-	
Silver	μg/1	48	0	-	
Zinc	μg/l	729	371	96.	184.
C CHARLESED LOEDA D					
Outfall 004 - LEAPS and OEPA D	<u>ata</u>	721	2	22	20
Copper	μg/ι	751	2	<i>LL</i> .	50.
Outfall 004 - OEPA and 2c Data					
Aluminum	μg/l	3	2	869.43	1191.0
Arsenic	μg/l	4	3	9.2	12.6
Barium	μg/l	3	3	208.05	285.0
Chloroform ^A	μg/1	4	2	2.56	3.51
4-chloro-3-methylphenol	μg/l	3	1	31.97	43.8
Cvanide, free	μg/l	4	1	10.95	15.
Delta-BHC	ug/l	3	1	0.068	0.093
Fluoride	ug/l	1	1	2350.0	3220.0
Iron	ug/l	4	4	9224.28	12636.0
Manganese	ug/l	4	4	235.35	322.4
NO2+NO3	mg/l	4	4	3.82	5.23
Phenol	<u>.</u>	4	1	4.82	6.6
Potassium	m6/1	3	3	13140.0	18000.0
Strontium	на/I	3	3	1559.28	2136.0
	με/1 mg/l	3	3	4161.0	5700.0
100	1112/1	5	5		2100.0

Table 31. Effluent Data for AK Steel (cont.)

		# of	#>	Average	Maximum
Parameter	Units	Samples	MDL	PEQ	PEQ
Outfall 008 - 2c Data					
Cyanide, total	μg/l	1	1	135.78	186.0
Fluoride	μg/l	1	1	6740.0	9240.0
NO2+NO3	mg/l	1	1	1.77	2.42
Outfall 009 - LEAPS Data					
NH ₃ -N (summer)	mg/l	12	5	1.48	2.03
NH ₃ -N (winter)	mg/l	12	7	2.41	3.30
Arsenic	μg/l	40	0		-
Cadmium	μg/l	40	0		_
Chormium, hexavalent	μg/l	39	2	43.	58.
Copper	μg/1	40	0		_
Cyanide, free	μg/1	40	0		_
Lead	μg/l	40	0		_
Mercury	μg/l	40	0		
Nickel	μg/l	40	0		
Platinum	μg/1	1	0		-
Selenium	μg/1	40	0		
Silver	μg/l	40	0		
Zinc	μg/l	40	2	95.	130.
Outfall 009 - 2c Data					
Iron	μg/l	1	1	1765.4	2418.0
Fluoride	μg/l	1	1	5880.0	8060.0
Manganese	ug/1	1	1	334.92	458.8
NO2+NO3	mg/l	1	1	0.50	0.68

Table 31. Effluent Data for AK Steel (cont.)

		# of	#>	Average	Maximum
Parameter	Units	Samples	MDL	PEQ	PEQ
Outfall 011 - LEAPS Data					
NH ₂ -N (summer)	mg/l	262	235	3.04	6.38
NH_2 -N (winter)	mg/l	196	194	4.80	10.2
Acetone	μg/l	11	0	-	
Cadmium	μg/l	48	0	Contract	
Chromium +6	μg/l	27	0		
Copper	μg/l	738	0		10188
Cyanide, free	μg/l	738	22	9.5	13.
Lead	μg/l	738	14	29.	40.
Selenium	μg/l	52	0	-clanel	
Silver	μg/l	48	0	-	
Zinc	μg/l	737	128	47.	93.
Outfall 011 - OEPA and 2c Data					
Aluminum	μg/l	2	1	1381.45	1892.4
Arsenic	μg/l	3	2	10.95	15.0
Barium	μg/l	2	2	205.28	281.2
Chloroform ^A	μg/l	3	2	3.09	4.23
Delta-BHC	μg/l	2	2	0.039	0.053
Dieldrin ^A	μg/l	2	1	0.0175	0.0239
Heptachlor ^A	μg/l	2	1	0.0244	0.0334
Hexachlorobenzene ^A	μg/l	3	1	0.0064	0.0087
Iron	μg/1	3	3	9241.8	12660.0
Manganese	μg/l	3	3	405.15	555.0
NO2+NO3	mg/l	3	3	11.3	15.48
Fluoride	μg/l	1	1	6830.0	9360.0
Potassium	μg/l	2	2	30514.0	41800.0
Strontium	μg/l	2	2	2063.86	2827.2
TDS	mg/l	2	2	2768.45	3792.4
Outfall 015 - LEAPS Data					
NH ₃ -N (summer)	mg/l	239	14	0.17	0.33
NH ₃ -N (winter)	mg/l	187	9	0.33	0.45
Cadmium	μg/l	48	0	-	-
Chromium	μg/l	48	0		
Lead	μg/l	674	3	21.	29.
Silver	μg/l	48	0	-	
Zinc	µg/l	674	228	78.	157.

Table 31. Effluent Data for AK Steel (cont.)

	<u>,</u>	# of	# >	Average	Maximum
Parameter	Units	Samples	MDL	PEQ	PEQ
Outfall 015 - OEPA and 2c Data					
Aldrin ^A	μg/l	2	1	0.036	0.049
Alpha-BHC ^A	μg/l	2	1	0.017	0.023
Aluminum	μg/l	2	2	1783.68	2443.4
Antimony	μg/l	1	1	68.34	93.62
Arsenic	μg/l	3	2	10.95	15.0
Barium	μg/l	2	2	277.4	380.0
Bis (2-ethylhexyl) phthalate ^A	μg/l	3	1	22.63	31.0
Copper	μg/l	3	2	38.84	53.2
Cyanide, free	μg/l	3	1	15.62	21.39
4,4-DDD ^A	μg/l	2	1	0.039	0.053
Endrin aldehyde µg/l	2 1	0.039	0.053		
Fluoride	μg/l	1	1	101380.0	138880.0
Gamma-BHC ^A	μg/l	2	1	0.022	0.03
Heptachlor ^A	μg/l	2	1	0.008	0.01
Iron	μg/l	3	3	22119.0	30300.0
Manganese	μg/l	3	3	396.39	543.0
NO2+NO3	mg/l	3	3	9.77	13.38
Phenolics	μg/l	3	1	32.85	45.0
Potassium	μg/l	2	2	38836.0	53200.0
Strontium	μg/l	2	2	2968.18	4066.0
TDS	mg/l	2	2	3217.84	4408.0

Table 31. Effluent Data for AK Steel (cont.)

^A Carcinogen

		0	Inside			
			Average		Maximum	Mixing
	ww	Human	Agri-	Aquatic	Aquatic	Zone
Parameter	Units	Health	culture	Life	Life	Maximum
Aldrin	110/1	0.0014	- an dae			
Antimony	110/1	4300		190	900	1800
Arsenic	110/I		100	150.	340	680
Barium	µg/1 110/1			220	2000	4000
Benzene	µg/1 110/1	710		160	2000. 700	1400
Beryllium	на/I	280	100	71	610	1200
Bis (2-chloroethyl) ether	μ <u>ε</u> /1 μσ/1	200. 14		71.	010.	1200.
Bis (2-ethylbexyl) phthalate	μ ₆ /1	50		8.4	1100	2100
Boron	μg/1			0.4	8500	2100.
Bromoform	μg/1			930. 230	1100	2200
Bromomethane (Methyl	μg/1	3000. 4000	die de	250. 16	29	2200. 75
Bromide)	με/Ι	4000.		10.	50.	13.
Cadmium	ug/l	~~	50.	6.1	17.	34
Chlorine, total residual	ug/l			11.	19.	38
Chlorodibromomethane	ug/l	340.	and along			
Chloroform	ug/1	4700.	and sale	140.	1300.	2600.
2-Chlorophenol	ug/l	400.		32.	290.	580
Chromium ⁺⁶ , dissolved	ug/1		** **	11.	16.	31.
Chromium, total	ug/1	*** - 22-	100.	220.	4700.	9300.
Cobalt	ug/1		law sam	24.	220.	440
Copper	ug/1	1300.	500.	25.	42.	84
Cvanide. free	ug/]	220000.		12.	46	92
4.4'-DDD	ug/1	0.0084				-
4.4'-DDE	ug/l	0.0059				100 MA
4.4'-DDT	ug/1	0.0059				
1.4- Dichlorobenzene	ug/l	2600.		9.4	57	110
Dichlorobromomethane	ug/l	460.				
2.4-Dichlorophenol	г- <i>ө</i> - цу/l	790.		11.	110	210
Dieldrin	ug/1	0.0014		0.056	0.24	0.47
Endosulfan	ug/1	240.				
Endrin	г <i>ө</i> т ug/l	0.81		0.036	0.086	0.17
Endrin Aldehyde	ug/l	0.81				
Fluoride	ug/1		2000.	~ *		
Hentachlor	110/1	0.0021				
Heptachlor Epoxide	г. о. 110/1	0.0011				
Hexachlorobenzene	м <i>ө</i> л на/1	0.0077				
alpha-BHC	μα/1	0.13				-
upin Dire	$\mu g \mu$	0.15				

Table 32. Water Quality Criteria for the Great Miami River
		0	Outside Mixing Zone Criteria			
			Average		Maximum	Mixing
		Human	Agri-	Aquatic	Aquatic	Zone
Parameter	Units	Health	culture	Life	Life	Maximum
	n	0.46				
beta-BHC	μg/1	0.46				
gamma-BHC (Lindane)	μg/l	0.63		0.057	0.95	1.9
Iron	μg/l		5000.			
Lead	μg/l		100.	28.	540.	1100.
MBAs	μg/l				500.	
Mercury	μg/l	0.012	10.	0.91	1.7	3.4
Methylene Chloride	μg/l	16000.		1900.	11000.	22000.
Molybdenum	μg/l			110.	2400.	4700.
Nickel	μg/l	4600.	200.	140.	1300.	2500.
Nitrate+Nitrite	mg/l		100			Marinda.
PCBs	μg/l	0.0017				
Phenol	μg/l	4600000.	Tere and	400.	4700.	9400.
Selenium	μg/l	11000.	50.	5.0	au 109	
Silver	μg/l			1.3	12.	24.
Strontium	μg/l			5300.	48000.	95000.
Tetrachloroethylene	μg/l	89.		53.	430.	850.
Thallium	μg/1	6.3		17.	79.	160.
Toluene	μg/l	200000.		62.	560.	1100.
Total Dissolved Solids	μg/l			1500000.		
1,1,1-Trichloroethane	μg/l	1030000.		76.	690.	1400.
2,4,6-Trichlorophenol	μg/l	65.		4.9	39.	79.
Zinc	μg/l	69000.	25000.	320.	320.	640.

Table 32. Water Quality Criteria for the Great Miami River -continued.

Table 33. Water Quality Criteria for Dicks Creek

		0	Outside Mixing Zone Criteria					
Parameter	Units	Human Health	Agri- culture	Aquatic Life	Aquatic Life	Zone Maximum		
Copper	μg/l	1300.	500. 100	30. 37	52. 710	100.		
Nickel Zinc	μg/l μg/l μg/l	4600. 69000.	200. 25000.	170. 390.	1500. 390.	3000. 780.		

Parameter	Units		Value	Basis
Upstream Flow GMR at Taylorsville				
7010	cfs	summer	52.	USGS gage #03263000, 1921-97 data
/210	015	winter	83.	USGS gage #03263000, 1921-97 data
		annual	50.	USGS gage #03263000, 1921-97 data
1010	cfs	annual	43.	USGS gage #03263000, 1921-97 data
30010	cfs	summer	60.	USGS gage #03263000, 1921-97 data
50210		winter	116.	USGS gage #03263000, 1921-97 data
Harmonic Mean Flow	cfs	annual	241.	USGS gage #03263000, 1921-97 data
Mixing Assumption	%	average	100	Stream-to-discharge ratio
(GMR & Tribs.)	%	maximum	100	Stream-to-discharge ratio
Stillwater River at Mouth				
7Q10	cfs	summer	16.6	USGS gage #03266000, 1925-97 data
		winter	41.6	USGS gage #03266000, 1925-97 data
		annual	16.6	USGS gage #03266000, 1925-97 data
1Q10	cfs	annual	11.4	USGS gage #03266000, 1925-97 data
30Q10	cfs	summer	22.9	USGS gage #03266000, 1925-97 data
		winter	57.2	USGS gage #03266000, 1925-97 data
Harmonic Mean Flow	cfs	annual	111.3	USGS gage #03266000, 1925-97 data
Mad River				
at Mouth				
7Q10	cfs	summer	143.8	USGS gage #03270000, 1914-21, 24-97
		winter	182.1	USGS gage #03270000, 1914-21, 24-97
		annual	141.8	USGS gage #03270000, 1914-21, 24-97
1Q10	cfs	annual	134.5	USGS gage #03270000, 1914-21, 24-97
30Q10	cfs	summer	158.3	USGS gage #03270000, 1914-21, 24-97
		winter	212.1	USGS gage #03270000, 1914-21, 24-97
Harmonic Mean Flow	cts	annual	391.1	USGS gage #03270000, 1914-21, 24-97
Wolf Creek at Mouth				
7Q10	cfs	summer	1.74	USGS gage #03271000, 1938-50, 86-97
-		winter	3.38	USGS gage #03271000, 1938-50, 86-97
		annual	1.64	USGS gage #03271000, 1938-50, 86-97
1Q10	cfs	annual	1.33	USGS gage #03271000, 1938-50, 86-97
30Q10	cfs	summer	2.46	USGS gage #03271000, 1938-50, 86-97
		winter	6.35	USGS gage #03271000, 1938-50, 86-97
Harmonic Mean Flow	cfs	annual	12.4	USGS gage #03271000, 1938-50, 86-97

Table 34. Instream Conditions and Discharger Flow for Great Miami River

Table 34. Instream Conditions and Discharger Flow for Great Miami River - continued.

Parameter	Units	an a	Value	Basis
Twin Creek at Mouth				
7010	cfs	summer	5.4	USGS gage #03272000, 1914-23, 27-97
· ····	••••	winter	16.1	USGS gage #03272000, 1914-23, 27-97
		annual	5.4	USGS gage #03272000, 1914-23, 27-97
1010	cfs	annual	4.71	USGS gage #03272000, 1914-23, 27-97
30010	cfs	summer	7.24	USGS gage #03272000, 1914-23, 27-97
		winter	24.1	USGS gage #03272000, 1914-23, 27-97
Harmonic Mean Flow	cfs	annual	40.5	USGS gage #03272000, 1914-23, 27-97
Four Mile Creek at Mouth				
7Q10	cfs	summer	6.84	USGS gage #03272700, 1970-97 data
-		winter	15.5	USGS gage #03272700, 1970-97 data
		annual	6.84	USGS gage #03272700, 1970-97 data
1Q10	cfs	annual	5.92	USGS gage #03272700, 1970-97 data
30Q10	cfs	summer	9.58	USGS gage #03272700, 1970-97 data
		winter	31.9	USGS gage #03272700, 1970-97 data
Harmonic Mean Flow	cfs	annual	50.7	USGS gage #03272700, 1970-97 data
Holes Creek at Mouth				
7Q10	cfs	summer	1.11	USGS gage #03271300, 1959-72 data
-		winter	2.55	USGS gage #03271300, 1959-72 data
		annual	1.11	USGS gage #03271300, 1959-72 data
1Q10	cfs	annual	1.11	USGS gage #03271300, 1959-72 data
30Q10	cfs	summer	1.43	USGS gage #03271300, 1959-72 data
		winter	3.5	USGS gage #03271300, 1959-72 data
Harmonic Mean Flow	cfs	annual	8.31	USGS gage #03272000, 1914-23, 27-97
Indian Creek at Mouth				
7Q10	cfs	summer	0.2	USGS gage #03274200, 1961-69 data
		winter	0.5	USGS gage #03274200, 1961-69 data
		annual	0.2	USGS gage #03274200, 1961-69 data
1Q10	cfs	annual	0.2	USGS gage #03274200, 1961-69 data
30Q10	cfs	summer	0.3	USGS gage #03274200, 1961-69 data
		winter	0.8	USGS gage #03274200, 1961-69 data
Harmonic Mean Flow	cfs	annual	1.17	USGS gage #03272800, 1960-72 data

Table 34. Instream Conditions and Discharger Flow for Great Miami River - continued.

Parameter	

Units

Value Basis

AK Steel - Middletown NPDES Fact Sheet Page 75

Clear Creek at Mouth				
7010	cfs	summer	0.4	USGS gage #03271700, 1959-69 data
•		winter	1.5	USGS gage #03271700, 1959-69 data
		annual	0.4	USGS gage #03271700, 1959-69 data
1010	cfs	annual	0.4	USGS gage #03271700, 1959-69 data
30010	cfs	summer	0.6	USGS gage #03271700, 1959-69 data
50010	C 10	winter	2.5	USGS gage #03271700, 1959-69 data
Harmonic Mean Flow	cfs	annual	3.0	USGS gage #03272000, 1914-23, 27-97
Elk Creek at Mouth				
7Q10	cfs	summer	0.4	USGS gage #03272200, 1960-67 data
		winter	1.3	USGS gage #03272200, 1960-67 data
		annual	0.4	USGS gage #03272200, 1960-67 data
1010	cfs	annual	0.4	USGS gage #03272200, 1960-67 data
30010	cfs	summer	0.6	USGS gage #03272200, 1960-67 data
202.0		winter	2.1	USGS gage #03272200, 1960-67 data
Harmonic Mean Flow	cfs	annual	3.0	USGS gage #03272000, 1914-23, 27-97
Bear Creek at Mouth				
7010	cfs	summer	2.21	USGS gage #03272000, 1914-23, 27-97
		winter	4.02	USGS gage #03272000, 1914-23, 27-97
		annual	2.21	USGS gage #03272000, 1914-23, 27-97
1010	cfs	annual	2.1	USGS gage #03272000, 1914-23, 27-97
30010	cfs	summer	2.52	USGS gage #03272000, 1914-23, 27-97
20 4 . 0		winter	5.38	USGS gage #03272000, 1914-23, 27-97
Harmonic Mean Flow	cfs	annual	8.14	USGS gage #03272000, 1914-23, 27-97
Gregory Creek at Mouth				
7010	cfs	summer	0.26	USGS gage #03272200, 1960-67 data
		winter	0.84	USGS gage #03272200, 1960-67 data
		annual	0.26	USGS gage #03272200, 1960-67 data
1010	cfs	annual	0.26	USGS gage #03272200, 1960-67 data
30010	cfs	summer	0.39	USGS gage #03272200, 1960-67 data
50210		winter	1.35	USGS gage #03272200, 1960-67 data
Harmonic Mean Flow	cfs	annual	1.93	USGS gage #03272000, 1914-23, 27-97
Pleasant Run at Mouth				
7Q10	cfs	summer	0.04	USGS gage #03274200, 1961-69 data
		winter	0.10	USGS gage #03274200, 1961-69 data
		annual	0.04	USGS gage #03274200, 1961-69 data
1010	cfs	annual	0.04	USGS gage #03274200, 1961-69 data
30010	cfs	summer	0.06	USGS gage #03274200, 1961-69 data
		winter	0.16	USGS gage #03274200, 1961-69 data
Harmonic Mean Flow	cfs	annual	0.23	USGS gage #03272800, 1960-72 data
Table 34 Instream Cor	nditions an	d Discharger Flow	for Great	Miami River - continued.
	with the second			
Parameter	Units		Value	Basis
Banklick Creek				

at Mouth				
7Q10	cfs	summer	0.01	USGS gage #03274200, 1961-69 data
		winter	0.03	USGS gage #03274200, 1961-69 data
		annual	0.01	USGS gage #03274200, 1961-69 data
1Q10	cfs	annual	0.01	USGS gage #03274200, 1961-69 data
30Q10	cfs	summer	0.02	USGS gage #03274200, 1961-69 data
		winter	0.05	USGS gage #03274200, 1961-69 data
Harmonic Mean Flow	cfs	annual	0.07	USGS gage #03272800, 1960-72 data
Twomile Creek				
	ofe	summar	0.02	USCS gage #0327/200 1061.60 data
/Q10	015	winter	0.02	USGS gage $\#03274200$, 1901-09 data
		annual	0.04	USGS gage $\#03274200, 1961-69$ data
1010	cfs	annual	0.02	USGS gage #03274200, 1961-69 data
30010	cfe	summer	0.02	USGS gage $\#03274200, 1961-69$ data
50Q10	015	winter	0.02	USGS gage #03274200, 1961-69 data
Harmonic Mean Flow	cfs	annual	0.10	USGS gage #03272800, 1961-09 data USGS gage #03272800, 1960-72 data
Paddy's Run				
at Mouth				
7010	cfs	summer	0.03	USGS gage #03274200, 1961-69 data
		winter	0.08	USGS gage #03274200, 1961-69 data
		annual	0.03	USGS gage #03274200, 1961-69 data
1010	cfs	annual	0.03	USGS gage #03274200, 1961-69 data
30010	cfs	summer	0.05	USGS gage #03274200, 1961-69 data
		winter	0.13	USGS gage #03274200, 1961-69 data
Harmonic Mean Flow	cfs	annual	0.19	USGS gage #03272800, 1960-72 data
Instream Hardness	mg/l	annual	320.	STORET/LEAPS; 974 values, 1995-2001

Table 34. Instream Conditions and Discharger Flow for Great Miami River - continued.

Parameter	Units		Value	Basis
Background Wate	r Quality			
Aldrin	μg/l	annual	0.	No representative data available.
Alpha-BHC	μg/l	annual	0.	No representative data available.

Antimony	μg/l	annual	0.	No representative data available.
Arsenic	μg/l	annual	1.9	STORET; 8 values,4 <mdl, 1990-95<="" td=""></mdl,>
Barium	μg/l	annual	0.	No representative data available.
Beryllium	μg/l	annual	0.	No representative data available.
Bis (2-ethylhexyl)				
phthalate	μg/1	annual	0.	No representative data available.
Bis (2-chloroethyl)				
ether	μg/l	annual	0.	No representative data available.
Boron	μg/l	annual	0.	No representative data available.
Bromomethane	μg/l	annual	0.	No representative data available.
Cadmium	μg/l	annual	0.1	STORET; 22 values, 19 <mdl, 1989-95<="" td=""></mdl,>
Chlorine, total res	μg/l	annual	0.	No representative data available.
Chloroform	μg/l	annual	0.	No representative data available.
Chromium ⁺⁶ , diss	μg/l	annual	0.	No representative data available.
Chromium, total	μg/l	annual	0.	STORET; 17 values, 17 <mdl, 1989-94<="" td=""></mdl,>
Cobalt	μg/1	annual	0.	No representative data available.
Copper	μg/l	annual	5.	STORET; 22 values, 20 <mdl, 1989-95<="" td=""></mdl,>
Cyanide, free	μg/l	annual	0.	No representative data available.
4,4'-DDE	μg/l	annual	0.	No representative data available.
4,4'-DDT	μg/l	annual	0.	No representative data available.
1,4-Dichlorobenzene	μg/l	annual	0.	No representative data available.
2,4-Dichlorophenol	μg/l	annual	0.	No representative data available.
Dieldrin	μg/l	annual	0.	No representative data available.
Endrin	μg/l	annual	0.	No representative data available.
Fluoride	μg/l	annual	0.	No representative data available.
Gamma-BHC	μg/l	annual	0.	No representative data available.
Heptachlor	μg/l	annual	0.	No representative data available.
Heptachlor epoxide	μg/l	annual	0.	No representative data available.
Hexachlorobenzene	μg/l	annual	0.	No representative data available.
Iron	μg/l	annual	1375.	STORET; 12 values,0 <mdl, 1989-94<="" td=""></mdl,>
Lead	μg/l	annual	1.	STORET; 22 values, 16 <mdl, 1989-95<="" td=""></mdl,>
Mercury	μg/l	annual	0.	No representative data available.
Molybdenum	μg/l	annual	0.	No representative data available.
Nickel	μg/l	annual	0.	STORET; 22 values, 22 <mdl, 1989-95<="" td=""></mdl,>
Nitrate+Nitrite	mg/l	annual	2.91	STORET; 34 values,0 <mdl, 1989-95<="" td=""></mdl,>
Selenium	μg/l	annual	1.25	STORET; 8 values,7 <mdl, 1990-95<="" td=""></mdl,>
Silver	μg/l	annual	0.	No representative data available.
Strontium	μg/l	annual	0.	No representative data available.
TDS	mg/l	annual	408.	STORET; 11 values,0 <mdl, 1990-95<="" td=""></mdl,>
2,4,6-				
Trichlorophenol	μg/l	annual	0.	No representative data available.
Zinc	μg/l	annual	10.	STORET; 22 values, 10 <mdl, 1989-95<="" td=""></mdl,>
177 CL 1011 C	c		* * ****	and the state of t
AK Steel 011 flow	cts	average	14.17	SWIMS - 95^{e} percentile of mean values, $1/96 - 4/02$.

Table 35. Instream Conditions and Discharger Flow for Dicks Creek

Parameter	Units		Value	Basis
Dicks Creek above Nor	th Branc	h		
7010	cfs	annual	0.	USGS gage #03272300, 1960-69 data
1010	cfs	annual	0.	USGS gage #03272300, 1960-69 data
Harmonic Mean Flow	cfs	annual	0.50	USGS gage #03272300, 1960-69 data
				0000 gage #002/2000, 1900 09 data
North Branch Dicks Ci	reek upst	ream AK Steel		
7Q10	cfs	annual	0.	USGS gage #03272300, 1960-69 data
1Q10	cfs	annual	0.	USGS gage #03272300, 1960-69 data
Harmonic Mean Flow	cfs	annual	0.43	USGS gage #03272300, 1960-69 data
Shakar Creek at mouth				
7010	cfe	annual	0.15	USCS man #02272200 1060 60 data
1010	cfe	annual	0.15	USGS gage #03272300, 1960-69 data
Harmonic Mean Flow	ofe	annual	0.15	USGS gage #03272300, 1960-69 data
Harmonic Mean Flow	015	annuar	4.43	0303 gage #03272300, 1900-09 data
Mixing Assumption	%	average	100	Stream-to-discharge ratio
	%	maximum	100	Stream-to-discharge ratio
				Stroum to usoninge funo
Instream Hardness	mg/l	annual	400.	AK Steel
Background Water Ou	ality for]	Dicks Creek abov	e North Br	anch
Aldrin	μg/l	annual	0.	No representative data available.
Antimony	μg/l	annual	0.	No representative data available.
Barium	ug/l	annual	44.	STORET. 8 values, 0 <mdl, 2000<="" td=""></mdl,>
Bis (2-EHP)	μg/l	annual	0.	No representative data available.
Boron	ug/1	annual	0.	No representative data available.
Copper	ug/1	annual	7.8	STORET: 8 values, 5 <mdl, 2000<="" td=""></mdl,>
Cyanide, free	ug/l	annual	0.	No representative data available
4,4 DDD	ug/1	annual	0.	No representative data available
Fluoride	μg/1	annual	0.	No representative data available.
Gamma-BHC	μg/l	annual	0.	No representative data available.
Heptachlor	μg/l	annual	0.	No representative data available.
Hexachlorobenzene	µg/l	annual	0.	No representative data available.
Iron	μg/l	annual	630.	STORET. 8 values, 0 <mdl, 2000<="" td=""></mdl,>
Lead	μg/l	annual	0.	STORET: 8 values, 8 <mdl, 2000<="" td=""></mdl,>
Molybdenum	μg/l	annual	0.	No representative data available.
Nickel	μg/l	annual	0.	STORET: 8 values, 8 <mdl, 2000<="" td=""></mdl,>
PCBs	μg/l	annual	0.	No representative data available.
Selenium	μg/l	annual	1.1	STORET: 8 values, 7 <mdl 2000<="" td=""></mdl>
Strontium	ug/l	annual	313.	STORET: 8 values, 0 <mdl, 2000<="" td=""></mdl,>
TDS	mg/l	annual	1192.	STORET, 8 values, 0 < MDL, 2000
Zinc	ug/l	annual	39.	STORET: 8 values, 0 <mdl, 2000<="" td=""></mdl,>
	10			

Daramatar	Inito		Value	Basis
Rackground Water Oua	lity for N	Jorth Branch abo	value	al
Aldrin	μι γ ΙΟΓ Γ πα/1	annual	0	No representative data available
Antimony	μ <u>ε</u> /1 μα/1	annual	0.	No representative data available
Barium	$\mu g/l$	annual	55	STORET 10 values 0-MDL 2000
Big (2 EUD)	μg/1	annual	0	No representative data available
Boron	μ <u>ε</u> /1 μα/1	annual	0.	No representative data available
Copper	μ <u>g</u> /1 μα/1	annual	0. 5	STORET: 10 values 7-MDL 2000
Cupper Cupper	μg/1 μα/1	annual	0	No representative data available
	μg/1	annual	0.	No representative data available
Fluoride	μg/1 μg/1	annual	0.	No representative data available
Gamma-BHC	μg/1 μg/1	annual	0.	No representative data available
Hantachlor	μg/1 μg/1	annual	0.	No representative data available.
Hexachlorobanzana	μg/1	annual	0.	No representative data available.
Iron	μg/1	annual	510	STORET 10 values 0 <mdl 2000<="" td=""></mdl>
Land	μg/1	annual	0	STORET: 10 values, 0 <mdl, 2000<="" td=""></mdl,>
Maluhdanum	μg/1	annual	0.	No representative data available
Nielsel	μg/1	annual	0.	STOPET: 10 values 10 MDL 2000
NICKEI DCD-	μg/1	annual	0.	STORET, TO values, TO <midl, 2000<="" td=""></midl,>
PCDS	μg/1	annual	0.	STORET: 10 univer 10 MDL 2000
Strenting	μg/1	annual	0.	STORET: 10 values, 10 <mdl, 2000<="" td=""></mdl,>
Strontum	μg/1	annual	231.	STORET, 10 values, 0 <mdl, 2000<="" td=""></mdl,>
	mg/I	annual	388. 21	STORET, 10 values, 0 <mdl, 2000<="" td=""></mdl,>
Zinc	μg/1	annual	21.	STORET; 10 values, 1 <mdl, 2000<="" td=""></mdl,>
Background Water Oua	lity for S	hakers Creek at	mouth	
Aldrin	ug/l	annual	0.	No representative data available.
Antimony	ug/l	annual	0.	No representative data available.
Barium	ug/1	annual	74.	STORET. 10 values. 0 <mdl, 2000<="" td=""></mdl,>
Bis (2-EHP)	ug/l	annual	0.	No representative data available
Boron	ug/1	annual	0.	No representative data available.
Copper	ug/1	annual	5.	STORET: 10 values. 8 <mdl, 2000<="" td=""></mdl,>
Cvanide, free	ug/1	annual	0.	No representative data available.
4.4 DDD	ug/1	annual	0.	No representative data available.
Fluoride	ug/1	annual	0.	No representative data available.
Gamma-BHC	ug/1	annual	0.	No representative data available.
Hentachlor	110/1	annual	0	No representative data available
Hexachlorobenzene	ug/1	annual	0	No representative data available
Iron	ug/]	annual	1320	STORET. 10 values. 0 <mdl 2000<="" td=""></mdl>
Lead	μσ/l	annual	1 1	STORET: 10 values, 8 < MDL, 2000
Molyhdenum	но/1 110/1	annual	0	No representative data available
Nickel	μσ/l	annual	0	STORET: 10 values 10 <mdl 2000<="" td=""></mdl>
PCBs	μσ/1 μσ/1	annual	0.	No representative data available
Selenium	μg/1 μσ/1	annual	0.	STORET 10 values 10-MDL 2000
Strontium	μ ₆ /1 μσ/1	annual	315	STORET: 10 values 0-MDL 2000
TDS	μg/1 mg/l	annual	380	STORET, 10 values, UNIDE, 2000
Tine	11g/1	annual	16	STORET, 10 values, USIVIDL, 2000
ZIIIC	μg/I	aiiliuai	10.	STOKET, TO VALUES, OCIVIDE, 2000

Table 35. Instream Conditions and Discharger Flow for Dicks Creek (cont)

Parameter	Units		Value	Basis
AK Starl 002 flow	afa		1 27	50^{th} respective wave $2/06 - 4/02$
AK Steel 002 now	CIS	average	2.48	30° percentile value, 2/96 - 4/02
		maximum	2.40	95 percentile value 2/96 - 4/02
AK Steel 003 flow	cfs	average	2.75	50^{th} percentile value, 1/96 - 4/02
		maximum	8.74	95 th percentile value 1/96 - 4/02
AK Steel 004 flow	cfs	average	4.08	50 th percentile value, 1/96 - 4/02
		maximum	5.46	95 th percentile value 1/96 - 4/02
AK Steel 009 flow	cfs	average	0.05	AK Steel application
		maximum	1.59	AK Steel application
AK Steel 015 flow	cfs	average	1.01	50 th percentile value, 1/96 - 4/02
		maximum	1.96	95 th percentile value 1/96 - 4/02

Table 35. Instream Conditions and Discharger Flow for Dicks Creek (cont)

Table 36. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria for AK Steel 002

EXHIBIT 2

			Average			Inside
Parameter	Units	Human Health	Agri Supply	Aquatic Life	Maximum Aquatic Life	Mixing Zone Maximum
Barium	μg/l	an iir		223.	2181.	4000.
Cyanide, free	μg/l	426700. ^A	where below	18.	95. ^A	92.
Fluoride	μg/l		2680.	ute and		
Iron	μg/l		6381.			
PCBs ^B	μg/l	0.015	Jost WEL		via ha	
Strontium	μg/l	ator 100.		5396.	52500.	95000.
TDS	mg/l	ann dad		1523.		den ette

^A Allocation must not exceed the Inside Mixing Zone Maximum.

^B Parameter would not require WLA based on reasonable potential. Requested by Permit staff.

			Average		Maximum	Inside Mixing
Parameter	Units	Human Health	Agri Supply	Aquatic Life	Aquatic Life	Zone Maximum
Barium	μg/l			223.	2181.	4000.
Bis (2-EHP)	μg/l	197.		21.	2104. ^A	2100.
Fluoride	μg/l		2680.			
Hexachlorobenzene	μg/l	0.035				
Iron	μg/l		6381.			
Strontium	μg/l			5396.	52500.	95000.
TDS	mg/l			1523.		
Zinc	μg/l	109600. ^A	39687. ^A	462.	440.	780.

Table 37. Summary of Effluent Limits to Maintai	Applicable Water Quality C	riteria for AK Steel 003
---	----------------------------	--------------------------

^A Allocation must not exceed the Inside Mixing Zone Maximum.

Table 38. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria for AK Steel 004

		_0000000000000000000000000000000000000	Average			Inside
Parameter	Units	Human Health	Agri Supply	Aquatic Life	Aquatic Life	Zone Maximum
Barium	11 o/l			223	2181	4000
Conner	μ <u>σ</u> /1	3195. ^A	1225. ^A	54.	141. ^A	100.
Cvanide, free	ug/l	426700. ^A		18.	95. ^A	92.
Fluoride	μg/l		2680.			
ron	ug/l		6381.			
Lead	μg/l		240.	67.	1932. ^A	1400.
Strontium	μg/l			5396.	52500.	95000.
ГDS	mg/l			1523.		
Zinc	μg/l	109600. ^A	39687. ^a	462.	440.	780.

^A Allocation must not exceed the Inside Mixing Zone Maximum.

Table 39. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria for AK Steel 009

			Average			Inside
Parameter	Units	Human Health	Agri Supply	Aquatic Life	Maximum Aquatic Life	Mixing Zone Maximum
				······		
Chromium, hexavalent	μg/l					31.
Fluoride	μg/l		2680.		***	
Iron	μg/l		6381.			
Nickel	μg/l	411700. ^A	17900. ^A	11536. ^A	18277. ^A	3000.
Selenium	μg/l	2.76E6	12495.	926.		
Zinc	μg/l	109600. ^A	39687. ^A	462.	440.	780.

^A Allocation must not exceed the Inside Mixing Zone Maximum.

			Average	11070-1111-11-01-001-00-00-00-00-00-00-00-00		Inside
Parameter	Units	Human Health	Agri Supply	Aquatic Life	Maximum Aquatic Life	Mixing Zone Maximum
Barium	μg/l	-012 cite		489.	4272. [*]	4000.
Copper	μg/l	4628. ^A	1777. ^A	45.	72.	84.
Cyanide, free	μg/l	868000. ^A	غود شد.	23.	83.	92.
Dieldrin	μg/l	0.011	101 000-	0.3	1.2 ^A	0.47
Fluoride	μg/l		43660.			
Heptachlor	μg/l	0.063				
Hexachlorobenzene	μg/l	0.2				
Iron	μg/l		105500.			
Lead	μg/l	3400 Janu	415.	56.	1035.	1100.
Strontium	μg/l			12307.	104487. ^A	95000.
TDS	mg/l			2954.		
Zinc	μg/l	254300. ^A	92140. [^]	584.	553.	640.

Table 40. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria for AK Steel 011

^A Allocation must not exceed the Inside Mixing Zone Maximum.

		anna an de sin de seu anno 1999 mais de se	Average			Inside
					Maximum	Mixing
		Human	Agri	Aquatic	Aquatic	Zone
Parameter	Units	Health	Supply	Life	Life	Maximum
	(1	0.011				
Aldrin	μg/I	0.011				
Antimony	μg/l	53350. ^A		1787.	9399. ^a	1800.
Barium	μg/l			223.	2181.	4000.
Bis (2-EHP)	μg/l	197.		21.	2104. ^A	2100.
Copper	μg/l	3195. ^A	1225. ^A	54.	141. ^A	100.
Cyanide, free	μg/1	426700. ^A		18.	95. ^A	92.
4,4 DDD	μg/l	0.069				
Fluoride	μg/l		2680.		~	
Gamma BHC	μg/l	5.2 ^A		0.30	3.7 ^A	1.9
Heptachlor	μg/1	0.017				
Iron	μg/l		6381.			
Lead	μg/l		240.	67.	1932. ^A	1400.
Strontium	μg/l			5396.	52500.	95000.
TDS	mg/l			1523.		
Zinc	μg/l	109600. ^A	39867. ^A	462.	440.	780.

Table 41. Summary of Effluent Limits to Maintain Applicable Water Quality Criteria for AK Steel 015

^A Allocation must not exceed the Inside Mixing Zone Maximum.

<u>Group 1</u> :	Due to a lack of criteria, the following parameters could not be evaluated at this time.						
	Manganese		Phenolics		Potassium		
Group 2:	PEQ < 25% of WQS or all data below minimum detection limit; WLA not required. No recommended, monitoring optional.						
	Arsenic NO2+NO3 Silver		Cadmium PCBs Zinc		Chloroform Selenium		
Group 3:	PEQ _{max} < 50% of ma monitoring optional.	ximum PEL	and $PEQ_{avg} < 50\%$	of average PEL	No limit recommended,		
	Cyanide, free		Fluoride				
<u>Group 4</u> :	$PEQ_{max} \ge 50\%$ but < average PEL. Monit	100% of the toring is appr	maximum PEL or P opriate.	$EQ_{avg} \ge 50\%$ by	ut < 100% of the		
	Iron (>75%) Strontig	um					
<u>Group 5</u> :	Maximum PEQ ≥ 10 either the average or conditions that incre	00% of the m maximum P ase the risk t	aximum PEL or ave EQ is between 75 a o the environment a	erage PEQ ≥ 100 nd 100% of the are present. Lim	0% of the average PEL, or PEL and certain it recommended.		
	Limits to Protect Nu	meric Water	Quality Criteria				
	Parameter	Units	Applicable Period	<u>Recommende</u> Average	ed Effluent Limits Maximum		
	Barium TDS	μg/l mg/l	annual annual	223. 1523.	2181.		

<u>Group 1</u> :	Due to a lack of criteria, the following parameters could not be evaluated at this time.					
	Aluminum PAHs Potassium		Bromodichloror Phenolics, 4AA	nethane P	Manganese Phenolics, total	
Group 2:	PEQ < 25% of WQS recommended, moni	S or all data toring optio	below minimum de nal.	tection limit; WL	A not required. No limit	
	Arsenic Copper Selenium		Cadmium NO2+NO3 Silver		Chloroform PCBs	
Group 3:	PEQ _{max} < 50% of ma monitoring optional	aximum PEI	L and PEQ _{avg} < 50%	6 of average PEL.	No limit recommended,	
	Hexachlorobenzene Strontium		Iron Zinc		Lead	
<u>Group 4</u> :	$PEQ_{max} \ge 50\%$ but < average PEL. Moni	100% of the toring is app	e maximum PEL or propriate.	$\operatorname{PEQ}_{\operatorname{avg}} \ge 50\%$ by	t < 100% of the	
	Fluoride (>75%)		TDS (>75%)		
<u>Group 5</u> :	Maximum $PEQ \ge 10$ either the average of conditions that incre	00% of the n maximum I case the risk	naximum PEL or av PEQ is between 75 to the environment	verage PEQ ≥ 100 and 100% of the 2 are present. Lim	9% of the average PEL, or PEL and certain it recommended.	
	Limits to Protect Nu	meric Wate	r Quality Criteria			
	Parameter	Units	Applicable Period	<u>Recommende</u> Average	d Effluent Limits Maximum	
	Barium Bis (2-EHP) μg/l	µg/l annual	annual 21.	223. 2 2100.	2181.	
A	Additivity of carcine	ogens. Follo	owing are the human	n health limits for	the carcinogens:	
	Substa	nce	Parameter	Limits for Hun	nan Health (µg/l)	
	A B		Hexachlorobenzer Bis (2-EHP)	ne 0.035 197.		

The following equation will be used to calculate the additivity factor:

 $\frac{MAC_A}{.035 \ \mu g/l} + \frac{MAC_B}{197. \ \mu g/l} \le 1.0$

where MAC = average concentration of all samples collected within the month.

<u>Group 1</u> :	Due to a lack of crit time.	eria, the fo	llowing parameters co	ould not be evalu	ated at this	
	Aluminum Manganese		4 chloro 3 methy Potassium	lphenol	Delta-BHC	
<u>Group 2</u> :	PEQ < 25% of WQS recommended, mon	S or all data itoring opti	a below minimum dete ional.	ection limit; WL	A not required. No limit	
	Arsenic		Cadmium		Chloroform Lead	
	NO2+NO3 Silver		Phenol		Selenium	
<u>Group 3</u> :	: PEQ _{max} < 50% of maximum PEL and PEQ _{avg} < 50% of average PEL. No limit recommendation monitoring optional.					
	Copper		Strontium		Zinc	
<u>Group 4</u> :	$PEQ_{max} \ge 50\%$ but < average PEL. Mon	<100% of the state	he maximum PEL or F ppropriate.	$PEQ_{avg} \ge 50\%$ by	ut < 100% of the	
	Barium (>75%)		Cyanide, free		Fluoride (>75%)	
<u>Group 5</u> :	Maximum PEQ ≥ 1 either the average o conditions that incr	00% of the r maximun ease the ris	maximum PEL or aven PEQ is between 75 a k to the environment a	erage PEQ \geq 100 nd 100% of the are present. Lim	0% of the average PEL, or PEL and certain it recommended.	
	Limits to Protect N	umeric Wa	ter Quality Criteria			
			Applicable	Recommende	ed Effluent Limits	
	Parameter	Units	Period	Average	Maximum	
	Iron	μg/l	annual	6381.		
	TDS	mg/l	annual	1523.		

<u>Group 1</u> :	Due to a lack of critic time.	iteria, the fo	ollowing parameters co	ald not be evaluated at	his
	Manganese		Platinum		
<u>Group 2</u> :	PEQ < 25% of WQ recommended, more	S or all dat nitoring opt	a below minimum dete ional.	ction limit; WLA not re	equired. No limit
	Arsenic Cyanide, free NO2+NO3 Silver		Cadmium Lead Nickel	Coppe Mercu Seleni	r ry um
Group 3:	PEQ _{max} < 50% of n monitoring optiona	naximum P d.	EL and $PEQ_{avg} < 50\%$ of	of average PEL. No lin	iit recommended,
	Iron		Zinc		
<u>Group 4</u> :	$PEQ_{max} \ge 50\%$ but average PEL. Mor	<100% of t nitoring is a	he maximum PEL or P ppropriate.	$EQ_{avg} \ge 50\%$ but < 100	% of the
	No parameters fit t	he criteria c	of this group		
<u>Group 5</u> :	Maximum $PEQ \ge 1$ either the average of conditions that increased	100% of the or maximun rease the ris	maximum PEL or aver n PEQ is between 75 ar k to the environment ar	rage PEQ \geq 100% of the d 100% of the PEL and represent. Limit recom	e average PEL, or l certain mended.
	Limits to Protect N	lumeric Wa	ter Quality Criteria		
			Applicable	Recommende	d Effluent Limits
	Parameter	Units	Period	Average	Maximum
	Chromium, hex.	μg/l	annual		31.
	Fluoride	μg/l	annual	2680.	

<u>Group 1</u> :	Due to a lack of citime.	riteria, the fo	llowing parameters co	uld not be evalu	ated at this		
	Acetone Manganese		Aluminum Potassium		Delta-BHC		
Group 2:	PEQ < 25% of WQS or all data below minimum detection limit; WLA not requirecommended, monitoring optional.						
	Arsenic Chromium +6 Selenium		Cadmium Copper NO2+N Silver	103	Chloroform		
Group 3:	PEQ _{max} < 50% of monitoring option	maximum PI al.	EL and PEQ _{avg} < 50% o	of average PEL.	No limit recommended,		
	Barium Hexachlorobenzer Zinc	ne	Cyanide, free Iron		Heptachlor Strontium		
Group 4:	$PEQ_{max} \ge 50\%$ but <100% of the maximum PEL or $PEQ_{avg} \ge 50\%$ but < 100% of the average PEL. Monitoring is appropriate.						
	Lead						
<u>Group 5</u> :	Maximum $PEQ \ge$ either the average conditions that inc	100% of the or maximum crease the rish	maximum PEL or aver PEQ is between 75 ar k to the environment ar	rage PEQ $\geq 100^{\circ}$ nd 100% of the F re present. Limi	% of the average PEL, or PEL and certain t recommended.		
	Limits to Protect 1	Numeric Wat	er Quality Criteria				
	Parameter	Units	Applicable Period	Recommended Average	<u>l Effluent Limits</u> Maximum		
	Dieldrin Fluoride TDS	μg/l mg/l mg/l	annual annual annual	0.011 6830. 2954.	0.47 		
A	Additivity of carc	inogens. Fol	lowing are the human l	health limits for	the carcinogens:		
	Subs	tance	Parameter	Limits for Hum	an Health (µg/l)		
	Α		Heptachlor	0.063			
	В		Hexachlorobenzene	0.2			
	С		Dieldrin	0.011			

The following equation will be used to calculate the additivity factor:

<u>MAC</u> _A	+	<u>MAC</u> _B ·	ł	<u>MAC</u> _C	<u>≤</u> 1.0
.063 µg/l		0.2 μg/l		0.011µ	g/l

where MAC = average concentration of all samples collected within the month. Table 47. Parameter Assessment for AK Steel 015

<u>Group 1</u> :	Due to a lack of criteria, the follow time.	ing parameters could not be evalu	ated at this
	Aluminum Potassium	Manganese	Phenolics
<u>Group 2</u> :	PEQ < 25% of WQS or all data bel recommended, monitoring optional	ow minimum detection limit; WL.	A not required. No limit
	Alpha-BHC Chromium NO2+NO3	Arsenic Endrin aldhyde Silver	Cadmium Lead
Group 3:	PEQ _{max} < 50% of maximum PEL a monitoring optional.	nd $PEQ_{avg} < 50\%$ of average PEL.	No limit recommended,
	Antimony Zinc	Gamma-BHC	Heptachlor
<u>Group 4</u> :	$PEQ_{max} \ge 50\%$ but <100% of the maverage PEL. Monitoring is appropriate the second	aximum PEL or $PEQ_{avg} \ge 50\%$ bu priate.	t < 100% of the
	Copper Strontium	Cyanide, free (>75%)	4,4 DDD
<u>Group 5</u> :	Maximum $PEQ \ge 100\%$ of the max either the average or maximum PEQ	timum PEL or average PEQ \ge 100 Q is between 75 and 100% of the I	% of the average PEL, or PEL and certain

conditions that increase the risk to the environment are present. Limit recommended.

Limits to Protect Numeric Water Quality Criteria

	Applicable		Recommended	Effluent Limits	
Parameter	Units	Period		Average	Maximum
Aldrin	ug/l	annual		0.011	
Barium	μg/l	annual		223.	2181.
Bis (2-EHP) µg/l	annual		21.	2100.	
Fluoride	μg/l	annual		2680.	
Iron	μg/l	annual		6381.	
TDS	mg/l	annual		1523.	

Table 47. Parameter Assessment for AK Steel 015 (cont.)

Additivity of carcinogens	Following are the human he	ealth limits for the carcinogens:
---------------------------	----------------------------	-----------------------------------

A

Substance	Parameter	Limits for Human Health (µg/l)	animi.
Α	Aldrin	0.011	
В	Bis (2-EHP)	197.	
С	4,4'-DDD	0.069	
D	Gamma-BHC	5.2	
E	Heptachlor	0.017	
The following equation wil	be used to calculate th	e additivity factor:	

$\underline{MAC}_A +$	$MAC_{B} +$	<u>MAC</u> _c +	\underline{MAC}_{D} +	$\underline{MAC}_{E} \leq 1.0$
.011 µg/l	197. μg/l	0.069µg/1	5.2 μg/l	0.017 µg/l

where MAC = average concentration of all samples collected within the month.

AK Steel - Middletown NPDES Fact Sheet Page 92

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (kg/day)ª	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monito	r		Mc
Suspended Solids	mg/l		~-	2363	7278	BPT/Bubble
Oil and Grease	mg/l			126	362	BPT
Lead, T.	μg/l			3.77	11.7	BAT/Bubble
Zinc, T.	μg/l	400 660	uur ide	3.12	18.7	BAT/Bubble

Table 48.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001001 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 420, Iron and Steel Manufacturing; Bubble = Reassigning load limits between outfalls 001, 005, 631 and 641 under the BPT/BAT regulations for the Iron and Steel Manufacturing industry (40 CFR 420.03); M = Monitoring.
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Lin	nits		
		Concentra	tion	Loading (l	(g/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD			•		Mc
Discolved Solide	ma/l		Monitor		من عن المراجع	M/RP ^c
Suspanded Solids	mg/1		Monitor			M
Ammonia-N	mg/l		Wiolinto	,		1.4.
Summer			Monitor	•		M ^c
Winter			Monitor			M ^c
Oil and Grease	mg/l		10			WQS
pH	S.U.	w w et et et et	6.5 to 9	.0		WQS
Barium, T. R.	μg/l		Monitor	, 		M/RP ^c
Iron, T. R.	μg/l		Monitor			M/RP ^c
Strontium, T. R.	μg/l		Monitor	[M/RP ^c
Zinc, T.R.	μg/l		Monitor	[M ^c

Table 49.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001002 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WQS = Ohio Water Quality Standards (OAC 3745-1).
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Lin	<u>nits</u>		
		Concentrat	tion	Loading (k	(g/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monitor			Mc
Dissolved Solids	mg/l		Monitor			M/RP ^c
Suspended Solids Ammonia-N	mg/l mg/l	يع يت غلا العا مع من يت ألك	Monitor	*		M ^c
Summer			Monitor			M ^c
Winter		_ ~ ~ ~ ~ ~ ~ ~ ~	Monitor			M°
Oil and Grease	mg/l		10			WQS
pH	S.U.		6.5 to 9.0			WQS
Fluoride, T.	mg/l		Monitor			M/RP ^c
Barium, T. R.	μg/l		Monitor	•	** ** ** ** ** **	M/RP ^c
Mercury, T.	ng/l		Monitor			M°
Zinc, T.R. Bis(2-ethylbexyl)-	μg/l		Monitor			M ^c
phthalate	μg/l		Monitor			M/RP ^c

Table 50.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001003 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WQS = Ohio Water Quality Standards (OAC 3745-1).
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Lir	<u>nits</u>		
		Concentra	tion	Loading (I	kg/day)ª	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD	و الحفظ المثلم الجمع المثلم العلم	Monito	r		M°
Dissolved Solids	mg/l	1523	set see	15,218		WLA
Oil and Grease	mg/l		10			WQS
pH	S.U.		6.5 to 9	.0		WQS
Fluoride	mg/l		Monito	r		M/RP ^c
Cvanide, free	mg/l		Monito	r		M/RP ^c
Barium, T. R.	μg/l		Monito	r		M/RP ^c
Iron, T. R.	μg/l	******	Monito	r		M/RP ^c
Zinc, T.R.	μg/l		Monito	r		M ^c
Whole Effluent						
Toxicity						
Acute	TUa		Monitor (w	/o trigger) -	*****	M ^c
Chronic	TUc		Monitor (w	/o trigger) -		M ^c

 Table 51.
 Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001004 and the basis for their recommendation.

^a Effluent loadings based on average design discharge flow of 2.64 MGD (average) and 3.53MGD (max.).

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(1)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WET = Whole Effluent Toxicity (OAC 3745-33-07(B)); WLA = Wasteload Allocation procedures (OAC 3745-2); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).
- [°] Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (kg/day)ª	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD	******	Monito	r		Mc
Suspended Solids	mg/l			950	1900	BPT/Bubble
Oil and Grease	mg/l		~-	227	227	ABS/EP
pH	S.Ŭ.		6.0 to 1	1.0	****	BPJ/EP
Lead, T.	μg/l			2.39	5.00	BAT/Bubble
Zinc. T.	ug/l		inter presi	3.6	6.29	BAT/Bubble

Table 52.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001005 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPJ = Best Professional Judgment; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 420, Iron and Steel Manufacturing; Bubble = Reassigning load limits between outfalls 001, 005, 631 and 641 under the BPT/BAT regulations for the Iron and Steel Manufacturing industry (40 CFR 420.03); EP = Existing Permit; M = Monitoring; PD = Plant Design Criteria.
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (l	kg/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monito	r		M ^c
Ammonia-N	mg/l		Monito	r	*****	Mc
COD	mg/l	*******	Monito	r		M ^c
Suspended Solids	mg/l		Monito	r		M°
Oil and Grease	mg/l		Monito	r	المتعارية المتعارية والمتعارية	Mc
рН	S.U.		6.5 to 9	.0		WQS
Fluoride, T.	mg/l		Monito	r		M/RP ^c
Chromium, hex, diss	.μg/l		31		0.12	WLA/IMZM
Zinc, T.	µg/l		Monito	r		M ^c

Table 53.	Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001009 and the
	basis for their recommendation.

^a Effluent loadings based on average design discharge flow of 0.032 MGD (average) and 1.03 MGD (max.).

^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).

[°] Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Lir	nits		
		Concentra	tion	Loading (l	(g/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monitor	r		Mc
Dissolved Solids	mg/l		Monitor	r		M/RP ^c
Suspended Solids	mg/l		Monitor	F		M ^c
Ammonia-N	mg/1		Monitor	r		M°
Oil and Grease	mg/1		10			WOS
nH	SU.		6.5 to 9	.0		WOS
Cvanide. Free	mg/l		Monito			M/RP ^c
Dieldrin	ug/l		Monito	r		M/RP ^c
Fluoride	mg/l		Monitor	r		M/RP ^c
Lead, T.R.	μg/l		Monitor	r		M/RP ^c
Mercury, T.	ng/l		Monitor	r		M°
Zinc, T.R.	μg/l		Monitor	r		M°
Whole Effluent	10					
Toxicity	ant to		Moniton ((WET
Acute	TUa	~ ~ ~ ~ ~ ~ ~ ~	· Monitor (W/O	(ingger)		WCI

Table 54.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001011 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WET = Whole Effluent Toxicity (OAC 3745-33-07(B)); WLA = Wasteload Allocation procedures (OAC 3745-2); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

********			Effluent Lin	nits		,
		Concentrat	ion	Loading (kg/day) ^a		
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Outfall 015						
Flow	MGD	1910 and and also been and and	Monitor			M ^c
Dissolved Solids	mg/l	***	Monitor			M/RP ^c
Suspended Solids	mg/l	میں بینے سے شہر سے سے سے	Monitor	******		M ^c
Oil and Grease	mg/l		10			WQS
pH	S.U.	~~~~~~~	6.5 to 9.	0	.	WQS
Barium, T.R.	μg/l		Monitor			M/RP ^c
Copper, T.R.	μg/l		Monitor			M/RP ^c
Cyanide, Free	mg/l		Monitor			M/RP ^c
Fluoride	mg/l		Monitor			M/RP ^c
Iron, T.R.	μg/l		Monitor			M/RP ^c
Strontium, T.R.	μg/l		Monitor			M/RP ^c
Zinc, T.R.	μg/l	and the size and any size and	Monitor			M°
Aldrin	μg/l		Monitor			M/RP ^c
4,4'-DDD	μg/l		Monitor			M/RP ^c
gamma-BHC	μg/l		Monitor			M°
Heptachlor	μg/l		Monitor	·		M°
Bis(2-ethylhexyl)-	-					
phthalate	μg/l		Monitor		~ ~ ~ ~ ~ ~ ~	M/RP°
Carcinogen Additivit	y		Monitor			M ^c

Table 55.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001015 and the
basis for their recommendation.

^a Effluent loadings based on average design discharge flow of N/A MGD.

^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WET = Whole Effluent Toxicity (OAC 3745-33-07(B)); WLA = Wasteload Allocation procedures (OAC 3745-2); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).

^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>nits</u>		
		Concentra	tion	Loading (kg/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monito	r		M ^c
Suspended Solids	mg/l		Monito	r		M ^c
Ammonia-N	mg/l			205	410	EP/301(g) variance
Oil and Grease	mg/l		Monito	r		M ^c
pH	S.U.		6.0 to 11	.5		BPJ/EP
Cyanide, Free	mg/l			5.71	11.4	BAT
Lead, T.	μg/l		Monito	r		M°
Mercury, T.	ng/l		Monito	r		M°
Zinc, T.	μg/l		Monito	r		Mc
Phenolics, T.	μg/l			0.19	0.38	BAT

Table 56.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001613 and the
basis for their recommendation.

- ^b <u>Definitions:</u> 301(g) variance = Variance from BAT limits under Section 301(g) of the federal Clean Water Act; BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPJ = Best Professional Judgment; EP = Existing Permit; M = Monitoring.
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Lin	<u>nits</u>		
		Concentra	tion	Loading (l	(kg/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monito	r		M ^c
Suspended Solids	mg/l		Monito	r		M ^c
Oil and Grease	mg/l		Monito	r		M ^c
pH	S.U.		6.0 to 9	.0		BPT
Lead, T.	μg/l		Monito	r		Mc
Zinc. T.	ug/l		Monito	r		Mc
Tetrachloroethylene	ug/l				0.50	BAT
Naphthalene	μg/l		-000 MB		0.33	BAT

Table 57.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001614 and the
basis for their recommendation.

- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 420, Iron and Steel Manufacturing; EP = Existing Permit; M = Monitoring;.
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (kg/day)ª	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
			<u></u>			
Flow	MGD		Monito	r		Mc
Suspended Solids	mg/l		mai film	700	1559	BPT/Bubble
pH	S.U.		6.0 to 9	.0		BPT
Lead, T.	μg/l			1.85	7.5	BAT/Bubble
Mercury, T.	ng/l	~ ~ ~ ~ ~ ~ ~ ~ ~	Monito	r		M°
Zinc, T.	ug/l			3.54	7.75	BAT/Bubble

Table 58.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001631 and the
basis for their recommendation.

- ^b <u>Definitions:</u> BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 420, Iron and Steel Manufacturing; Bubble = Reassigning load limits between outfalls 001, 005, 631 and 641 under the BPT/BAT regulations for the Iron and Steel Manufacturing industry (40 CFR 420.03); M = Monitoring.
- ^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (l	kg/day) ^a	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow	MGD		Monito	r	201 an un an an an an	Mc
Suspended Solids	mg/l	lar at		700	1400	BPT/Bubble
Oil and Grease	mg/l			323	904	BPT
pH	S.U.		6.0 to 9	.0		BPT
Lead. T.	μg/l	and total		1.75	5.00	BAT/Bubble
Zinc, T.	μg/l		ver fait	1.75	3.36	BAT/Bubble
Tetrachloroethylene	ug/1		uner sink		1.91	BAT
Naphthalene	µgЛ		-		1.27	BAT

Table 59.	Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001641 and the
	basis for their recommendation.

^a Effluent loadings based on average design discharge flow of N/A MGD.

 ^b <u>Definitions:</u> BAT = Best Available Control Technology Currently Available, 40 CFR Part 420, Iron and Steel Manufacturing; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 420, Iron and Steel Manufacturing; Bubble = Reassigning load limits between outfalls 001, 005, 631 and 641 under the BPT/BAT regulations for the Iron and Steel Manufacturing industry (40 CFR 420.03); M = Monitoring.

^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

		Effluent Lin	<u>mits</u>		
	Concentra	tion	Loading (kg/day)ª	
	30 Day	Daily	30 Day	Daily	
Units	Average	Maximum	Average	Maximum	Basis ^b
MGD		0.36			NSDS
mg/l	31	60		100 TTT	NSPS
mg/l	26	52			NSPS
S.U.		6.0 to 9	.0		NSPS
μg/l	1368	2216	web biter		ABS/AD/EP
μg/l	1904	3184			ABS/AD/EP
μg/l	1480	2610			NSPS
μg/l		1704			ABS/AD/EP
	Units MGD mg/l mg/l S.U. µg/l µg/l µg/l	Concentra 30 Day Units Average MGD mg/l 31 mg/l 26 S.U.	Effluent Lin Concentration 30 Day Daily Units Average Maximum MGD 0.36 mg/l 31 60 mg/l 26 52 S.U.	Effluent Limits Concentration Loading (30 Day 30 Day Daily 30 Day Units Average Maximum Average MGD 0.36 mg/l 31 60 mg/l 26 52 S.U.	Effluent Limits Concentration Loading (kg/day) ^a 30 Day Daily 30 Day Daily Units Average Maximum Average Maximum MGD 0.36 mg/l 31 60 mg/l 26 52 S.U.

Table 60.Final effluent limits and monitoring requirements for AK Steel outfall 1ID00001642 and the
basis for their recommendation.

In addition to the parameters listed above, the NSPS regulations for the Metal Finishing Industry include limitations for cadmium, copper, lead, silver and total cyanide. While these limits apply to the discharge from outfall 642, they are not used by AK Steel in metal finishing processes, and are not expected to be present in the discharge. These parameters are not included in the current NPDES permit for AK Steel. Based on this information and available monitoring data, Ohio EPA is proposing to grant a monitoring waiver for cadmium, copper, lead, silver and total cyanide under 40 CFR 122.44(a)(2). The applicable metal finishing limitations are:

		<u>30-Day</u>	<u>Daily</u>
Cadmium, T.	μg/l	70	110
Copper, T.	μg/l	2070	3380
Lead, T.	μg/l	430	690
Silver, T.	μg/l	240	430
Cyanide, T.	mg/l	0.65	1.20

- ^a Effluent loadings based on average design discharge flow of N/A MGD.
- ^b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(l)); AD = Antidegradation (OAC 3745-1-05); EP = Existing Permit; M = Monitoring; NSPS = New Source Performance Standards, 40 CFR Part 433, Metal Finishing Industry.
- [°] Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

			Effluent Li	<u>mits</u>		
		Concentra	tion	Loading (kg/day)ª	
		30 Day	Daily	30 Day	Daily	
Parameter	Units	Average	Maximum	Average	Maximum	Basis ^b
Flow Dissolved Solids Suspended Solids Oil and Grease Zinc, T.	MGD mg/l mg/l mg/l µg/l		Monito Monito Monito Monito Monito	r		M ^c M ^c M ^c M ^c

Table 61. Final monitoring requirements for AK Steel upstream station 1ID00001803 and the basis for their recommendation.

^a Effluent loadings based on average design discharge flow of N/A MGD.

^b <u>Definitions:</u> M = Monitoring.

^c Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Appendix - Effluent Guideline Calculations for AK Steel - Middletown Works

Effluent Guide	line Calculatio	ns for Ou	falls 613 (to F	inal Outfall	011)						
	Plant Eu		Plant Europeo	Plaat E		PD I Allos	N3000				
	Guideli	nee	Production	Loading		for boiler blowdown and					
	420 329-4	20 339	tons/day:	LOAU	ing	water plant r		Outfall 613	Allowance		
	420.02d-4	20.004	7176	kold	av	water plant p	av	kal	day		
	30-day	Daily	7110	30-day	Daily	30-day	Daily	30-day	Daily		
TSS	0.026	0.0782		160 /111	500 536	20 / 30	61 317	189 850	570 853		
Ammonia N	0.020	0.0102		10 026	57 078	20.405	01.017	10.030	57 078		
Cyanida T	0.00292	0.00070		5 708	11 403	0	0	5 708	11 403		
Denolice T	0.000070	0.00173		0.100	0.391	0	0	0.100	0.391		
Lood T	0.0000292	0.0000004		0.190	1 714	0.05	0 000	0.150	4 792		
Zinc T	0.000070	0.000203		0.071	2.567	0.05	0.009	0.021	1.703		
		0.000001		0.004	2.007	0.07	0.102	0.024	2.003		
			BPTs [.]								
Ammonia-N	0.0537	0.161		349 899	1049 045						
Phenolics, T	0.0021	0.00626		13.683	40.789						
									и _ч		
Effluent Guidelin	e Calculatio	ns for Out	falls 614 (to 0	Dutfall 011							
------------------------	---	---------------	-----------------	---------------	----------	---------------	---------------	---------------	---------------	----------	--
	Sulfuric Acid	Pickling	H2SO4 Pickling	Sulfuric Acid	Pickling	Hot Coating	/ Galvanizing	Hot Coating /	Hot Co	pating /	
	Guidelines 420.92a3-420.93a3 ka/kka		Production	Loa	iding	Guide	elines	Galvanizing*	Galva	inizing	
			tons/day:			420.123a1-	420.127a1	Tons/day:	Loa	ading	
			1861	ka	/day	kg/	kkg	3525	kg/day		
	30-day	Daily		30-day	Daily	30-day	Daily		<u>30-day</u>	Daily	
ISS	0.0225	0.0526		38.020	88.883	-0.0751	0.175		240.373	560.123	
Dil&grease	0.00751	0.0225		12.690	38.020	0.025	0.0751		80.018	240.373	
ead T.	0.000113	0.000338		0.191	0.571	0.000376	0.00113		1.203	3.617	
Zinc, T.	0.00015	0.000451		0.253	0.762	0.0005	0.0015		1.600	4.801	
	Cold For	mina	Cold Forming	Cold I	Forming						
	Guideli	nes	Production**	Loa	ading						
	420,102a4-420,103a4 to		tons/day:			Outfall 614	Allowance				
	kg/kk	ka/kka		kg	kg/day		day				
	<u>30-day</u>	Daily		<u>30-day</u>	Daily	<u>30-day</u>	Daily				
TSS	0.0113	0.0225		100.439	199.989	378.832	848.995				
Dil&grease	0.00376	0.00939		33.420	83.462	126.128	361.855				
Lead, T.	0.0000563	0.000169		0.500	1.502	1.895	5.690				
Zinc, T.	0.0000376	0.000113		0.334	1.004	2.188	6.568				
Naphthalene	0	0.0000376		0.000	0.334	0.000	0.334				
Tetrachloroethylene	0	0.0000563		0.000	0.500	0.000	0.500				
* #4 Aluminize - 1664	+ Zinc Grip 186	61 = 3525 to	ons per day.								
** #5 Temper Mill - 35	72 + #6 Tempe	r Mill - 6217	= 9789 tons per	day							
			L								

Effluent Guideline Calculations for Outfalls 63	(to outfall 003) and 005 (to outfall 015)
---	---

	Basic C	xygen	BOF	Basic O	xygen	Hot Fo	rming	Hot Stip Mill	Hot Forming	
	Furn	ace	Production	Furnace		Strip	Mill	Production	Strip	Mill
	420.42b-	420.43b	tons/day:	Loading (or	Loading (outfall 631)		420.73c1	tons/day:	lay: Loading 19557 kg/day	
	kg/k	kg	9708	kg/day		kg/ł	(kg	19557		
	30-day	Daily		30-day	Daily	<u>30-day</u>	Daily		<u>30-day</u>	Daily
TSS	0.0104	0.0312		91.675	275.024	0.16	0.427		2841.241	7582.562
Oil&Grease	0	0		0.000	0.000	0.0357	0.107		633.952	1900.080
Lead	0.0000626	0.000188		0.552	1.657	0.000108	0.000325		1.918	5.771
Zinc	0.0000939	0.000282		0.828	2.486	0.000163	0.000488		2.895	8.666
	Continuous Casting 420.62-420.63 kg/kkg		Cont. Casting Production tons/day:	Continuous Casting Loading kɑ/day		Vacuum Degassing 420.52-420.53 kg/kkg		Existing Source Production tons/day:	Vacuum Degassing Loadings kg/day	
	30-day	Daily	8688	<u>30-day</u>	Daily	<u> 30-day</u>	Daily	7892	30-day	Daily
TSS	0.026	0.078		205.106	615.319	0.00521	0.0156		37.335	111.789
Oil&Grease	0.0078	0.0234		61.532	184.596	0	0		0.000	0.000
Lead	0.0000313	0.0000939		0.247	0.741	0.0000313	0.0000939		0.224	0.673
Zinc	0.0000469	0.000141		0.370	1.112	0.0000469	0.000141		0.336	1.010

	Outfall 005 / kg/d	Allowance ay		
	<u> 30-day</u>	Daily	 	
TSS	3083.682	8309.669	 	
Oil&Grease	695.484	2084.676		
Lead	2.389	7.185		
Zinc	3.601	10.788		

BPJ monthly average oil&grease effluent limitation for the Hot Strip Mill set at 1/3 of the daily maximum limitation. BPJ for metals from hot strip mill are based on USEPA 1982 Development Document for the Iron & Steel Point Source Category, Volume IV, page 345.

	Cold Forming Guidelines 420.102a3-420.103a3 kg/kkg		#3 Cold Forming	Cold Forming		Cold Fo	orming	#7 Cold Forming		Cold Forming	
			Production Loading		Guide	Guidelines		Production		ding	
						420.102a4-420.103a4		tons/day:			
			10379	kg/day		kg/k	ikg		2660	kg/r	day
	<u>30-day</u>	Daily		<u>30-day</u>	Daily	30-day	Daily			<u>30-day</u>	Daily
TSS	0.0376	0.0751		354.347	707.752	0.0113	0.0225			27.293	54.344
Dil&grease	0.0125	0.0313		117.802	294.975	0.00376	0.00939			9.081	22.679
.ead, T.	0.000188	0.000563		1.772	5.306	0.0000563	0.000169			0.136	0.408
Zinc, T.	0.000125	0.000376		1.178	3.543	0.0000376	0.000113			0.091	0.273
Vaphthalene	0	0.000125		0.000	1.178	0	0.0000376			0.000	0.091
Tetrachloroethylene	0	0.000188		0.000	1.772	0	0.0000563			0.000	0.136
	Sulfuric Aci	d Pickling	H2SO4 Pickling	Sulfuric Acid Pickling		Hydrochloric		Hydrochloric		Hydro	chloric
	Guidel	ines	Production	Loading		Acid Pickling		Acid Pickling		Acid Pickling	
	420.92a3-420.93a3		tons/day:	0		420.92b2-420.93b2		Tons/day:		Loading	
	kg/k	kg	2690	kg/day		kg/k	kg		13186	16 kg/day	
	<u>30-day</u>	Daily		30-day	Daily	30-day	Daily			30-day	Daily
ſSS	0.0225	0.0526		54.957	128.477	0.035	0.0819)		419.051	980.580
Dil&grease	0.00751	0.0225		18.343	54.957	0.0117	0.035	5		140.083	419.051
_ead, T.	0.000113	0.000338		0.276	0.826	0.000175	0.000526	5		2.095	6.298
Zinc, T.	0.00015	0.000451		0.366	1.102	0.000234	0.000701			2.802	8.393

Effluent Guideline Calculations for Oufalls 641 and 642 (to Outfall 004)

	Acid Pickling Fume Scrubber Guidelines 420.92/93 b4 kg/day		# of scubbers:	2	Acid Pickling] Fume Scrubber Loadings		/	Alkaline Cleaning Guidelines 420.112b2		Alkaline Cleaning Tons/day:		Alkalin Lo	e Cleaning ading		
				ko/dav		av	L	ka/l	ka		2690	kg/day			
	3	0-day	Ď	aily			30-day	Daily	30-	-day	Daily			30-day	Daily
SS		2.45		5.72			4.900	11.440	1	0.0438	0.10	2		106.982	249.137
)il&grease		0.819		2.45			1.638	4.900	1	0.0146	0.043	8		35.661	106.982
ead, T.		0.0123		0.0368			0.025	0.074		0		0		0.000	0.000
inc, T.		0.0164		0.0491			0.033	0.098		0		0		0.000	0.000
									Metal F	inishing	Metal Finishing		Metal	Finishing	
	Ou	tfall 641	Allov	vance						433.16a		Flow:		Allowance (Outfall 642	
		kg/d	lay						L	mg/l			0.36	kg/day	
	3	0-day	D	aily					<u> 30</u> -	-day	Daily		0.36	<u>30-day</u>	Daily
SS		967.530	21	31.729						31	6	0		42.241	81.756
)il&grease		322.608	9	03.545						26	5	2		35.428	70.855
ead		4.304		12.911						0.43	0.6	9		0.586	0.940
linc		4.470		13.409						1.48	2.6	1		2.017	3.556
hromium	NA		NA							1.71	2.7	7		2.330	3.774
;opper	NA	I	NA							2.07	3.3	8		2.821	4.606
lickel	NA		NA							2.38	3.9	8		3.243	5.423
ТО	NA		NA							0	2.1	3		0.000	2.902
laphthalene		0		1.269					NA	I	NA			NA	NA
etrachloroethylene		0		1.908					NA	I	NA			NA	NA

Iffluent Guideline Calculations for Oufalls 641 and 642 - continued

Best Profession	al Judgmen	t Limits for	Miscellaneous	Process Wate	ers at Outfall 61	13	
		BBI Conservations					
	BPJ CONC	entrations					
		owdown and			water plan	t processes	
	water plant	processes	BPJ HOW (WGD).		water plan	(day	
		g/i Deilu	0.210		20 day	Doily	
	<u>30-day</u>	Daily			<u>su-uay</u>	Vally	
TSS	25	75			20,439	61.317	
Lead T	0.061	0.084			0.050	0.069	
Zinc T	0.086	0.125			0.070	0.102	
	0.000	0.120					
BPJ concentrations	for TSS based	on information	submitted by AK S	Steel.			
BPJ concentrations	for lead based	on PEQ values	calculated from be	oiler blowdown an	d water		
remineralizer regene	rant water data	from Develop	ment Document fo	r Steam Electric F	ower Generating		
Point Source Catego	ry, Table V-48	(see data below	w).				
BPJ concentrations	for zinc based of	on PEQ values	for Cleveland Elec	ctric Illuminating E	astlake Plant		
outfall 003 (water pla	ant/boiler blowd	own - settling/h	high rate filtration t	reatment) 1/92-8/9	97 (250 data points	, all >MDL).	
Waste Type	Plant #	Lead					
Boiler Blowdown	1003	ND					
Boiler Blowdown	4203	40					
Boiler Blowdown	2603 Unit 1	36					
Boiler Blowdown	2603 Unit 2	ND					
Demineralizer Reg.	4203	24					
Demineralizer Reg.	2603	ND					
PEQavg		61					
PEQmax		84					
301(g) variance	review for A	K Steel - Ou	utfall 613				
				all values are kg/	day		
Outfall 613						Current Permit	Draft Permit w/ new
	BAT	BPT	WLA (summer)	WLA (winter)	PEQ 2002-06	301(g) conditions	301(g) conditions
Ammonia-N							
30-day	19	350	206	206	141	205	205
Daily	57.1	1049	NA	NA	205	410	410
Phenolics							
30-day	0.19	13.7	NA	NA	0.144	0.9	0.19
Daily	0.381	40.8	NA	NA	0.203	1.8	0.381